• Title/Summary/Keyword: Melt-out

Search Result 213, Processing Time 0.023 seconds

Modeling of hollow formation and its dynamics in liquid gas assisted injection molding process

  • Kim, Dong-Hak;Ahn, Kyung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2004
  • Application of gas assisted injection molding has been expanded during last two decades because of many advantages such as design flexibility, dimensional stability, reduction of machine tonnages, and so on. However, the surface defects including hesitation mark and gloss difference are observed for thick parts. Difficulties in lay-out of the gas channel and processing condition are another disadvantages. Liquid gas assisted injection molding(LGAIM), in which a liquid with a boiling point lower than the temperature of the polymer melt is injected into the melt stream, and travels with the melt into the mold where it vaporizes and pushes the melt downstream and against the cavity walls to create hollow channels within the part, is a good alternative of the conventional gas assisted injection molding especially in manufacturing simple and very thick parts. Though this is a new frontier of the innovation in the injection molding industry, there is no guideline for the design and processing conditions. In this paper, theoretical analysis has been made to describe the hollow formation dynamics in LGAIM. This model provides an insight into LGAIM process: explains why LGAIM has advantages over conventional gas assisted injection molding, and gives a guideline for the design and processing conditions.

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

The Effects of Molding Conditions on the Surface Gloss of ABS Molding (ABS(Acrylonitrile-Butadiene-Styrene) 성형품의 성형조건이 표면 광택에 미치는 영향)

  • Jeong, Yeong-Deug;Hwang, Si-Hyon;Lee, Mi-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.110-115
    • /
    • 1999
  • The surface gloss of an injection molded part is one of the most significant point for evaluating the quality of products appearance. The effects of process condition on the gloss of ABS(Acrylonitrile-Butadiene-Styrene) molded part were investigated in this work. The measurements of gloss and morphology on the surface of molded part were carried out with different melt temperature, mold temperature, mold surface roughness, injection pressure and holding pressure. Gloss had a maximum value with melt temperature in the range of 210 to 220 ${^\circ}C$ and with mold temperature 40 to 50${^\circ}C$ and with injection pressure 80~90 MPa, respectively. Melt temperature was shown to have the largest effect on gloss in our work. Gloss was not improved in the region of melt temperature 240${^\circ}C$ above and of mold temperature 60${^\circ}C$ above. It was concluded that the variation of gloss was mainly caused by rubber particles migration under shear stress not by their aggregation or necklace.

  • PDF

A study on the Continuous Elimination of Inclusions in Al Alloy by Electromagnetic Force (전자기력을 이용한 알루미늄 합금중 개재물의 연속적 제거에 관한 연구)

  • Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.130-136
    • /
    • 2002
  • The growing use of aluminum for castings over the past decade has brought with it the increased scrutiny of component properties. One area that has received much attention is the effect of in inclusions - or impurities particles held in the metal - on casting properties. A new method of electromagnetic separation for removal of inclusions in aluminum alloy melts is proposed. The principle is that as the electromagnetic force induced in metal acts on inclusions due to low electric conductivity, they are moved to the direction opposite to electromagnetic force and can be separated and removed from the melt. Experiments were carried out on A356 melt mixed alumina particles and commercial Al alloys of ADC 10 and 12. In the experiment using A356, it was proved that $Al_2O_3$ particles was separated and removed continuously from matrix melt by electromagnetic force. Based on these results, the continuous separation experiment that used ADC 10, 12 was carried and the cleanliness of melt was assessed by the amount of porosity, hydrogen contents, PoDFA and mechanical properties through tensile test. As the results of analyses, the amount of porosity and hydrogen contents decreased without variation of chemical composition in the specimen that passed the electromagnetic continuous separator. In addition, tensile strength and elongation of this specimen increased by $20{\sim}30%$ because of reduction of inclusions.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding (플라스틱 유동을 고려한 사출성형 충전공정 중 금형의 변형 해석)

  • Jung, Joon Tae;Lee, Bong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.719-725
    • /
    • 2014
  • In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

Study of the Distillation of Ferromanganese Alloy Melts at Reduced Pressure (훼로 망간 합금철 용탕의 감압 증류에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;You, Byung-Don;Kim, Jong-Deok;Jang, Pill-Yong;Kang, Soo-Chang;Geum, Chang-Hun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.154-162
    • /
    • 2010
  • A fundamental study of the distillation behavior of ferromanganese alloy melts was carried out at 1773 K and 0.1333 kPa (=1 Torr). During the distillation of ferromanganese alloy melts under reduced pressure, manganese vaporizes preferentially to phosphorus and other solute elements. High purity manganese metal with a very low content of solute elements can be obtained by distillation of ferromanganese alloy melts. The evaporation of manganese is suppressed as the carbon content of ferromanganese alloy melt increases due to the decrease of activity and vapor pressure of the manganese. When the carbon content of ferromanganese alloy melt is high, melt droplets are ejected from the bath, especially in the early stages of the distillation, and the solute elements in the splashed droplets contaminate the condensed material. The ejection of melt droplets is presumed to be caused by the increase of melting temperature and viscosity of the surface layer of melt due to the enrichment of solute elements such as carbon and iron.

The Effects of Alloying Elements on the Formation of Interfacial Reaction Layer between Molten Aluminium Alloys and STD61 Tool Steel (알루미늄 합금 용탕/STD61 공구강의 계면 반응층 형성에 미치는 합금원소의 영향)

  • Park, Heung-Il;Park, Ho-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.161-167
    • /
    • 2005
  • The experiment of hot dip interaction tests was carried out in order to study the formation behavior of interfacial reaction layer between as-received STD61 hot work tool steel and a commercial pure aluminum melt, Al-xwt.%Fe(x=0.2, 0.5, 0.8 and 1.1) alloys melt and Al-xwt.%Si(x=1.0, 4.0, 7.0 and 10.0) alloys melt, respectively. The results show that the reaction layer, over 300 ${\mu}m$ in thickness, is easily formed by the dissolution of silicon from as-received tool steel. When the iron content in the aluminum alloy is higher than 1.1 wt.%, the thickness of reaction layer decreases below 180 ${\mu}m$ by preventing iron dissolution from the tool steel. The silicon dissolved from tool steel acts as a strong promoter on the formation of reaction layer, but the alloyed silicon in molten aluminum alloys acts as an inhibitor on the formation of reaction layer.