• Title/Summary/Keyword: Melt mixing

Search Result 144, Processing Time 0.125 seconds

Crosslinking Characteristics of High Density Polyethylene by Reactive Melt Processing (반응 용융 가공에 의한 고밀도 폴리에틸렌의 가교 특성 연구)

  • Lee Jong Rok;Lee Dong Gun;Hong Soon Man;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • Reactive melt processing has been carried out to investigate crosslinking characteristics of high density polyethylene OTDPE) with dicummyl peroxide (DCP) and perbutyle peroxide (PBP). The increase of torque in the internal mixer indicated that the crosslinking in HDPE has been occurred by peroxides. As a result, the substantial decrease of density, melting temperature, and melt enthalpy were found while the melt viscosity increased in partially crosslinked HDPE. In the mechanical properties of partially crosslinked HDPE, the increase of maximum strength and the decrease in elongation at break were clearly noticed and these were more pronounced when PBP was applied as a crosslinking agent. It seems that the maximum strength was obtained with reactive processing temperature at $150^{circ}C$, however, the mixing time did not affect to the strength of partially crosslinked HDPE.

Compatibilization of PC/SAN Blends via Ultrasound-irradiated Melt Mixing (초음파가 조사되는 용융 혼합에 의한 폴리카보네이트/스티렌-아크릴로니트릴 혼합물의 상용화)

  • 김형수
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.225-231
    • /
    • 2004
  • High intensity ultrasound was irradiated to induce mechano-chemical degradation during melt processing of polycarbonate (PC) and styrene-co-acrylonitrile (SAN) in an intensive mixer. It was found that macroradicals of PC and SAM can be generated during ultrasound assisted melt processing; which, in turn, provides a useful route to achieve in-situ compatibilization for the blends of PC and SAM by their mutual coupling. Effectiveness of compatibilization was assessed by investigating phase morphology and mechanical properties of the blends. It was observed that domain size was reduced and the stability of morphology was well maintained even after annealing treatment of the blends. In audition, the enhancement of mechanical properties such as elongation at break and tensile strength was evident, which added further confirmation on the desirable feature that sonication of melt-blends is able to enhance intermolecular interaction by promoting chemical bonds between dissimilar polymers without use of any compatibilizers.

Magenetic Properties of Nd-Fe-B-Co-based Melt-spun Ribbons an dTheir Bonded Magents (Nd-Fe-B-Co계 급냉리본과 Bond 자석의 자기적 성질)

  • Gang, Gye-Myeong;Gang, Gi-Won;O, Yeong-Min;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.175-184
    • /
    • 1993
  • Abstract Co-and/or AI-added Nd-Fe-B-based magnetic alloys were fabricated by using vacuum induction melting frunace, and melt-spun ribbons were made of the magnetic alloys with single roll rapid quenching method. The variation of magnetic properties of the melt-spun ribbons as a function of Cuwheel velocity (Vs) were investigated. Bonded magnets were made of the optimally quenched ribbon fragments, and the magnetic properties of the melt-spun ribbons and the bonded magnets were studied, relating to the microstructure and crystalline structure. Cu-wheel surface velocity had a strong effect on the magnetic properties of the melt-spun ribbons, and the maximum properties were obtained around Vs =20m/sec. The optimally quenched ribbon had a cellura-type microstructure, in which fine N$d_2$F$e_14$B grains were surrounded by thin Nd-rich phase. In case of a 2.1at% AI-added melt-spun ribbon, the magnetic properties were as follows: iHc, Br, and (BH)max were 15.5KOe, 7.8KG and 8.5MGOe respectively. And resin bonded magnets were fabricated by mixing optimally quenched ribbon fragments with 2.5wt % polyamide resin, compacting and binding at room temperature. The iHc, Br and (BH)max of bonded magnet were lO.2KOe, 4.4KG and 3.3MGOe respectively. And hot-pressed magnets were made by pressing the overquenched ribbons at high temperature. The magnetic properties of hot-pressed magnets were better than those of bonded magnets, and when the holding time was 8 minutes, the iHc, Br, and (BH)max of the hot-pressed magnet were 1O.8KOe, 7.3KG and 8.0MGOe respectively. Domain structure was mainly maze pattern, which means that the easy magnetization axis could be aligned, and the domain width of the hot-pressed magnets was smaller than that of bonded magnets.

  • PDF

Characterization of Specific Interactions in Organoclay Nanocomposites

  • Lim, Sang-Kyun;Lee, Eun-Hee;Chin, In-Joo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.292-292
    • /
    • 2006
  • A two-step process of the solution blending and the subsequent melt mixing in a Brabender mixer was used to prepare clay nanocomposites of SAN/PVC and of ABS, respectively. It was found that the new method was effective in obtaining well-dispersed nanocomposites for both cases. The glass transition behavior of the organoclay nanocomposites were analyzed by using theoretical equations. The interaction characteristics were evaluated by using the solubility parameters estimated from the group molar attraction constants.

  • PDF

폴리프로필렌의 친수화 개질 -Polypropylene-poly(vinyl alcohol-co-ethylene) 블렌드의 특성-

  • 임상규;손태원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.64-68
    • /
    • 1996
  • PP-EVOH(poly(vinyl alchol-co-ethylene)) blends were prepared by the mixing of polypropylene and poly(vinyl alcohol-co-ethylene) containing 38mol% of ethylene units (EVOH38) at melt state above PP melting temperature. The materials were characterized by using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle measurement to detemine the glass transition, meltin, decomposition temperatures, and wettability respectively. From the results, PP-EVOH(poly(vinyl alcohol-co-ethylene)) blends exgibits partial miscibility.

  • PDF

Oxygen Isotope Data of Winter Water in the Western Weddell Sea: Preliminary Results

  • Khim, Boo-Keun;Park, Byong-Kwon;Kang, Sung-Ho
    • Journal of the korean society of oceanography
    • /
    • v.33 no.1-2
    • /
    • pp.1-7
    • /
    • 1998
  • In the western Weddell Sea, winter mixed layer is characterized by near-freezing temperature and higher salinity due to brine injection through sea-ice formation. This layer becomes Winter Water being capped by warmer and less saline Antarctic Surface Water during the sea-ice melt-ing season. In this study, Winter Water was preliminarily identified by the oxygen isotopic com-positions. The ${\delta}^{18}$O values of Winter Water show the progressively increasing trend from south to north in the study area. It presumably reflects the enhanced mixing with Antarctic Surface Water due to the extent of influence by low S'"0 value of sea-ice/glacier meltwater. Correlations between salinity and 6'"0 values of seawater can be used to more generally characterize Winter Water with a view to identification. However, the prediction on the degree of mixing from these relationships needs more detailed isotope data, although this study allows the oxygen isotopic composition of seawater as a tracer to identify the water mass.

  • PDF

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

Intercalation of Polycarbonate/Montmorillonite Nanocomposites (폴리카보네이트와 몬모릴로나이트 나노복합체의 층간삽입)

  • 이양훈;홍성권;윤광수;최일석;이성구
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.818-825
    • /
    • 2001
  • Polycarbonate(PC)/montmorillonite (MMT) nanocomposites were prepared by solution and melt mixing methods. A d-spacing of the nanocomposites was measured by an X-ray diffractometer. Neat montmorillonite (MMT-Na) and MMTs modified by dodecyl ammonium (MMT-DA) or dimethyl hydrogenated tallow 2-ethylhexyl ammonium (MMT-25A) were used. The d-spacing value of PC/MMT-25A and PC/MMT-DA was higher than that of PC/MMT-Na. The d-spacing increased from around 12 to $37AA$ depending on the mixing method. PC was more readily introduced to the gallery of MMT as the molecular weight of PC reduced and the mixing time increased. PC/MMT-25A showed higher thermal stability by thermogravimetric analysis (TGA) than PC/MMT-DA and PC/MMT-Na.

  • PDF

Analyses of Size of Solidified Particles in Steam Explosions of Molten Core Material (원자로 물질의 증기폭발에서 고화 입자 크기 분석)

  • Park, Ik-Kyu;Kim, Jong-Hwan;Min, Beong-Tae;Hong, Seong-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1051-1060
    • /
    • 2010
  • The effect of materials on fuel coolant interactions (FCIs) was analyzed on the basis of a solidified particle size response for TROI experiments.$^{(1)}$ The solidified particle size response can provide an understanding of the relationship among the initial condition, the mixing, and an explosion. Through a comparison of the size distributions of the solidified particles in the case of explosive and non-explosive FCIs, it is revealed that an explosive FCI results in the production of a large amount of fine particles and a small amount of large particles. The material effect of the size of solidified particles was analyzed using non-explosive FCIs without losing the information on the mixing. This analysis indicates that an explosive melt includes large particles that participate in the steam explosion, whereas a nonexplosive melt includes smaller particles and finer particles.

Reactive compatibilization of liquid crystalline polymer/ethylene-acrylic acid ionomer blends (액정 고분자/에틸렌-아크릴산 이오노머 블렌드의 반응상용화에 관한 연구)

  • Cruz, Heidy;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3653-3659
    • /
    • 2015
  • This paper describes the reactive compatibilization of blends of a wholly aromatic thermotropic copolyester liquid crystalline polymer (TLCP) with random copolymers of ethylene and acrylic acid (EAA) and their salts. Blends were prepared by melt mixing in an intensive batch mixer, and the formation of a graft copolymer due to acidolysis between the TLCP and the acrylic acid group of the ionomer was evaluated. Chemical reaction was assessed by torque measurement during melt mixing and by thermal analysis and morphological observation. The Na-salt of the EAA ionomers was especially effective at promoting a grafting reaction. The extent of reaction depended not only on the cation, but also composition of the ionomer and reaction time. The product of the grafting reaction between the TLCP and a sodium-neutralized ionomer proved to be an effective compatibilizer for TLCP and EAA ionomers.