• Title/Summary/Keyword: Melt granulation

Search Result 4, Processing Time 0.025 seconds

Preparation of Solid Dispersion of Everolimus in Gelucire 50/13 using Melt Granulation Technique for Enhanced Drug Release

  • Jang, Sun Woo;Choi, Young Wook;Kang, Myung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1939-1943
    • /
    • 2014
  • Solid dispersion (SD) system of everolimus (EVR) with Gelucire 50/13 (Stearoyl polyoxyl-32 glycerides) was prepared using melt granulation technique with the aim of improving the physicochemical properties and dissolution rate. The solid state characterization using scanning electron microscopy and X-ray powder diffraction, indicated that the drug was homogeneously distributed in the surfactant carrier in a stable amorphous form. The dissolution rate of EVR from the optimized SD composed of the drug, Gelucire 50/13 and microcrystalline cellulose in a weight ratio of 1:5:10, was markedly rapid and higher than that from the drug powder and the market product (Afinitor$^{(R)}$, Novartis Pharmaceuticals) in all dissolution mediums tested from pH 3.0 to pH 6.8. The results of this study suggest that formulation of SD with Gelucire 50/13 using melt granulation procedure may be a simple and promising approach for improving the dissolution rate and oral absorption of the anti-cancer agent without the need for using an organic solvent.

A Study of Dexibuprofen Loaded Solid Dispersion Using Rotary Hot-melt Granulation (회전식 고온용융과립법을 이용한 덱시부프로펜 함유 고체분산체 연구)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.595-600
    • /
    • 2020
  • The purpose of this paper was to prepare and evaluate solid dispersions (SD) that can increase the dissolution rate of dexibuprofen as a model drug with low solubility in water using saccharides and sugar alcohols as dispersion materials. DSC, XRD, content and content uniformity test, dissolution test, and disintegration test were conducted for physicochemical evaluation of the prepared SD. For the results, it was confirmed using differential scanning calorimetry that fructose, which has a melting point around 120 ℃ of the device operating temperature range, is a suitable excipient for the preparation of SD by the rotary hot-melt granulation (RHMG) method. X-ray diffraction analysis was conducted to confirm that the crystallinity of dexibuprofen was reduced. Disintegration test of the prepared tablet using SD-containing dexibuprofen and fructose confirmed a very fast disintegration time within 1~2 seconds and also showed that the dissolution rate was about 20% faster than that of the dexibuprofen raw material. Dexibuprofen with reduced crystallinity by SD confirmed through the RHMG method can be used to increase the dissolution rate of the drug and increase the disintegration time of the tablet. Thus, it can be used in the manufacturing of various solid preparations.

Preparation and Dissolution Properties of Oral Controlled Release Formulation Containing Carvedilol (카르베딜롤을 함유하는 경구제어 방출형 제제의 제조 및 용출특성)

  • Choi, Won-Sik;Kim, Yong-Nam;Nam, Seok-Woo;Yang, Jin-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2451-2458
    • /
    • 2010
  • We prepared sustained release matrix system which contains carvedilol with Compritol 888 ATO used as lipophilic sustained release excipient and hydroxypropyl methyl cellulose (HPMC) or polyethylene oxide (PEO) used as hydrophilic sustained release polymer. Wet granulation compressed method was used for preparing carvedilol sustained release matrix tablets. When carvedilol sustained release matrix tablets were prepared, we evaluated the drug release kinetics which is affected by Compritol 888 ATO ratio, a kind of hydrophilic polymer (HPMC, PEO) and hot melt coating coagglutination (HMCC) process was done. The drug release kinetics was measured for 24 hours in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, using a dissolution tester at $37.5^{\circ}C$ in 50 rpm. Dissolution rate of controlled release matrix tablets of carvedilol was evaluated by paddle method. We confirmed that HMCC process was very effective to controlled release of drugs. The rate of Compritol 888 ATO, as a lipidic material, can control the drug release pattern about the elution rate of 95% and 24 hours delay than that of the normal tablet.

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.