• Title/Summary/Keyword: Melt

Search Result 2,358, Processing Time 0.027 seconds

Study molded part quality of plastic injection process by melt viscosity evaluation

  • Lin, Chung-Chih;Wu, Chieh-Liang
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • A study that demonstrates how to investigate the molded part quality and the consistency of injection process based on the rheological concept is proposed. It is important for plastic material whose melt viscosity is variable with respect to the processing condition. The formulations to couple the melt viscosity with injection pressure and fill time are derived first. Taking calculations of the measured pressure and the time by using these formulations, the melt viscosity in injection process can be determined on machine. As the relation between the injection speed and the melt viscosity is constructed, the influences of the setting parameter of injection machine on the molded part quality can be investigated through evaluating the state of the melt viscosity. In addition, a pressure sensor bushing (PSB) designed with a quick installation feature is also provided and validated. The results show that a higher injection speed improves the tensile strength of the molded part but also the consistency of the molded part quality. This work provides an alternative to evaluate the molding quality scientifically.

Melt-out Behaviour of 25wt% Al-Alloyed Ductile Iron (25wt% A1이 첨가된 구상흑연주철의 용손 거동)

  • Gwon, Gi-Hyeon;Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.34
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, effect of temperature and time on melt-out of 25wt% Al-alloyed ductile iron has been investigated. The oxidation tests were carried out in a tube furnace at $800^\circC$, $930^\circC$, and $1000^\circC$ for lh, 5h, 10h, 50h. The microstructure, microhardness, and $Al_2O_3$ layer of oxidation-treated 25wt% Al-alloyed ductile iron samples (10 x 10 x 10 mm) were investigated. Phase identification was performed by X-ray diffraction(XRD) and EDS. The oxidation-treated 25wt% Al-alloyed ductile iron samples at $930^\circC$ for lh, 5h, 10h and KS GCD 500 were used for melt-out test in an Al alloy melt. The melt-out test results showed that oxidation tested sample at $930^\circC$ for 5h which on the whole forms $2-3\mum$ $Al_2O_3$ layer showed lowest melt-out depth. It was observed showed that appropriate Al203 layer can affect melt-out behaviors.

  • PDF

Effects of Melt Super-heating on the Shape Modification of ${\beta}-AlFeSi$ Intermetallic compound in AC2B Aluminum Alloy (AC2B 알루미늄합금의 고온용해에 의한 금속간화합물 ${\beta}-AlFeSi$상 형상계량 효과)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2001
  • Melt super-heating which promotes shape modification of ${\beta}$ intermetallic compounds was conducted to improve mechanical properties of recycled AC2B aluminum alloy. Modification of needle-shape ${\beta}$ intermetallic compounds was effective for the specimens of AC2B aluminum alloys containing 0.85wt.% Fe by melt super-heating, in which the melts had been held at $850^{\circ}C$ or $950^{\circ}C$ for 30 minutes respectively. Owing to the modification of needle-shape of ${\beta}$ intermetallic compounds by melt superheating of the alloy with containing 0.85wt.% Fe to $950^{\circ}C$, increases in elongation and tensile strength were prominent to be more than double and 55% respectively in comparison with the melt heated to $740^{\circ}C$. Moreover, modification of needle-shape ${\beta}$ intermetallic compounds in the alloy containing O.85wt.% Fe by $950^{\circ}C$ melt super-heating led to 48% improvement of the value of impact absorbed energy as compared with the melt heated to $740^{\circ}C$.

  • PDF

Hydrogen Gas Pick-Up of Al-alloy Melt During Lost Foam Casting (소실모형 주조시 알루미늄 합금 용탕의 수소 용해에 관한 연구)

  • Shin, Seung-Ryoul;Choi, Hyun-Jin;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.167-173
    • /
    • 2002
  • The hydrogen gas pick-up problem that can occur during Lost Foam Casting was investigated by reduced pressure test and practical Lost Foam Casting. The proper test pressure of reduced pressure test was determined by experiments not to use polystyrene and gas contents of the melt were calculated from density measurement results. The results showed that the hydrogen pick-up increased with the increased amount of polystyrene that was replaced by melt. The hydrogen pick-up was larger in the case of no degassed melt than that of degassed melt. So the hydrogen pick-up depended on the initial hydrogen content of the melt and the contact time of the melt with the decomposed gas phase. The mold evacuation decreased the hydrogen pick-up and increased the flow length of melt during Lost Foam Casting. And the error of calculated hydrogen pick-up was calculated by numerical method.

A Study on Fabrication of Al-Cu alloy bar by Melt-extrusion Process (용탕압출법에 의한 Al-Cu 합금 선재의 제조에 관한 연구)

  • Joo, Dae-Heon;Lee, Byoung-Soo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.331-339
    • /
    • 2004
  • Melt-extrusion process, a metallic melt poured and solidified up to semisolid state in the container can be directly extruded through the die exit to form a product of bar shape without other intermediate processes. In this study, the fabrication characteristics of the process were evaluated with various process parameters, such as preheating temperature of extrusion dies, extrusion temperature and extrusion ratio. AI-Cu alloys were successfully extruded after squeezing out of liquid during melt-extrusion with smaller force compared to the solid extrusion. Soundly AI-Cu alloy bar was fabricated at the preheating temperature of $500{\sim}520^{\circ}C$. The range of extrusion temperature for soundly melt-extruded AI-Cu alloy bar was increased with increasing extrusion ratio. Mechanical properties of melt-extruded AI-Cu alloy bars were found change with Cu content of the melt-extruded bars due to the occurrence of segregation. The various extrusion temperature yielded equiaxed structure with a grains size about 200 ${\mu}m$.

Multi-Cellular Natural Convection in the Melt during Convection- Dominated Melting

  • Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.94-101
    • /
    • 2002
  • Convection-dominated melting in a rectangular cavity is analyzed numerically with particular attention to the multi-cellular flows in the melt. At the earlier stage of the melting, the melt region is quite similar to a cavity with high aspect rati71, where the multi-cellular natural convection appears. Numerical results show that the formation and evolution of the multiple flow cells in the melt region is approximately similar to t]tat of a single-phase flow in a tall cavity with the same aspect ratio; however, the continuous change of the melt region due to the melting affects the detailed process. Also, numerical aspects for the prediction of the detailed flow structure in the melt are discussed.

Effects of Melt Treatments on Microstructures and Mechanical Properties of A357 Alloy (A357합금에서 용탕처리가 미세조직 및 기계적 특성에 미치는 영향)

  • Lee, Jung-Moo;Lee, Sung-Hak;Yoon, Ji-Hyun;Kim, Kyung-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.69-76
    • /
    • 2003
  • The present work was undertaken to investigate the mutual effect of the individual melt treatment commonly applied in aluminum foundries such as grain refining, modification, degassing and filtration on the microstructures and the mechanical properties. A357 alloys were fabricated through various melt treatments such as degassing by gas bubbling filtration, modification via the addition of Al-Sr master alloy, grain refining through the addition of Al-Ti-B master alloy and filtration before pouring of the melt. Each melt treatment was performed at its optimum condition reported in the literatures. The effects of each melt treatment and their interactions on the microstructures and mechanical properties of A357 alloy were examined.

Effect of Inorganic Fillers on the Properties of Hydrated PAN Melt(I) -Rheological Properties of Hydrated PAN Melt- (무기충전재가 PAN의 수화용융특성에 미치는 영향에 관한 연구(I) -PAN 수화응용체의 유변학적 특성-)

  • 민병길;손태원
    • Textile Coloration and Finishing
    • /
    • v.12 no.5
    • /
    • pp.295-300
    • /
    • 2000
  • The melting behavior of hydrated polyacrylonitrile (PAN) and the rheological properties of hydrated PAN melt were investigated using DSC md modified capillary rheometer. With increasing the water content, Tm of the hydrated PAN was rapidly decreased and finally levelled off above a critical water content. However, the melt viscosity was further decreased even above the critical water content. The hydrated PAN melt showed a typical shear thinning behavior. In arrhenius plot, when the hydrated PAN melt was supercooled, it exhibited a different dependency on temperature from that above melting temperature.

  • PDF

Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites (용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.204-210
    • /
    • 2013
  • Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was $170^{\circ}C$, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method, adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.

Melt Rheology of Ethylene 1-Octene Copolymer Blends Synthesized by Ziegler-Natta and Metallocene Catalysts

  • Kim, Hak-Lim;Dipak Rana;Hanjin Kwag;Soonja Choe
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • The melt rheology of four binary blends of ethylene 1-octene copolymers (EOCs) which consist of one component by Ziegler-Natta and another by metallocene catalysts, was studied to elucidate miscibility in the melt by using torsion rheometer at 200$\^{C}$ and different shear rates. The four blend systems, designated into the FA+FM, SF+FM, RF+EN, and RF+PL blend, are divided and interpreted based on the melt index (MI), the density and the comonomer contents. The melt viscosity such asη', η", and η$\^$*/ is weight average value if the comonomer contents are similar, otherwise they show different manner. The experimental resole are analyzed based on the Cole-Cole plot of logη' uersus log η", the logarithmic plots of the dynamic storage modulus (G') versus the dynamic loss modulus (G") for various blend compositions, and the melt viscosity of 11', n", and f" as a function of blend compositions. As a cerise-quence, the FA+FM blend is miscible, but the SF+FM, RF+EN, and RF+PL blends are not in the melt. Thus miscibility of the blends studied in this communication is suggested to strongly influence by the comonomer contents rather than the density or the MI.

  • PDF