• Title/Summary/Keyword: Melon (Cucumis melo L.)

Search Result 119, Processing Time 0.024 seconds

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Soil EC and Yield and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) as affected by Fertigation (참외의 관비재배가 토양 EC, 참외의 수량 및 품질에 미치는 영향)

  • Jun, Ha Joon;Shin, Yong Seup;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • Experiments were conducted to investigate the effect of fertigation (fertilizer-added irrigation) on soil EC (electrical conductivity), nitrogen and calcium content in soil, vine growth and fruit yield of oriental melon (Cucumis melo L. var. makuwa Mak.). Soil EC was increased with the frequency of fertigation (Yamazaki's solution for melon, 900 L/1,000 plants, each time) up to $0.8dS{\cdot}m^{-1}$ as compared to that of conventional irrigation ($0.2dS{\cdot}m^{-1}$). Ca content in soil also increased in fertigation fields. Vine dry weigh (20 days after planting) was significantly increased in fertigation plot. Markedly increases in marketable fruit yield and lower rate of off-shape fruit were recorded with the increase in fertigation frequency. Mean fruit weight and soluble solids contents ($^0Brix$) in fruit were not affected by fertigation. Fresh weight loss during storage was significantly higher in fruits harvested from 2 times fertigation (09:00 and 18:00) plot than conventional irrigation and the 1 time fertigation ones.

Greenhouse Evaluation of Melon Rootstock Resistance to Monosporascus Root Rot and Vine Decline as Well as of Yield and Fruit Quality in Grafted 'Inodorus' Melons

  • Jang, Yoonah;Huh, Yun-Chan;Park, Dong-Kum;Mun, Boheum;Lee, Sanggyu;Um, Yeongcheol
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.614-622
    • /
    • 2014
  • Melons (Cucumis melo L.) are generally grafted onto Cucurbita rootstocks to manage soilborne pathogens such as Monosporascus root rot and v ine decline (MRR/VD) and Fusarium wilt. However, g rafting onto Cucurbita rootstocks reportedly results in the reduction of fruit quality. In this study, the resistance to MRR/VD, yield, and fruit quality of melons grafted onto melon rootstocks were evaluated under greenhouse conditions. Eight melon rootstocks (R1 to R8) were used and the inodorus melon 'Homerunstar' was used as scion. Melon rootstocks R1 to R6 were selected based on resistance to MRR/VD under greenhouse conditions. Non-grafted 'Homerunstar' and plants grafted onto squash interspecific hybrid 'Shintozwa' rootstock (Cucurbita maxima D. ${\times}$ C. moschata D.) served as controls. Grafted melons were cultivated in the greenhouse infested with Monosporascus cannonballus during two growing seasons (summer and autumn). The responses to MRR/VD, yield, and fruit quality differed depending on the rootstocks and growing season. The melons grafted onto 'Shintozwa' exhibited less severe disease symptoms and higher survival rates than non-grafted melons in both seasons. While the melon rootstocks in the summer cultivation did not increase the survival rate compared to non-grafted melons, the melon rootstocks R1 and R2 in the autumn cultivation led to higher survival rates. The melon rootstocks resistant to MRR/VD increased the percentage of marketable fruits and marketable yields. Grafting onto the melon rootstocks caused little or no reduction of fruit quality such as low calcium content, fruit softening, and vitrescence, especially in lower-temperature autumn season. Accordingly, these results suggest that grafting onto the melon rootstocks may increase the tolerance to MRR/VD and the marketable yield without a reduction of fruit quality.

Growth, Quality and Irrigation Requirements of Melon Cultivars in Hydroponic Cultivation Using Coir Substrate (코이어 배지를 이용한 멜론 수경재배 시 품종별 생육, 품질 및 급액 요구량)

  • Lim, Mi Young;Roh, Mi Young;Jeong, Ho Jeong;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.188-195
    • /
    • 2021
  • This study was conducted to investigate the growth and quality characteristics of melon (Cucumis melo L.) cultivars and the irrigation requirements for cultivars. In our previous study in 2019, twelve melon cultivars including 'Dalgona' were examined for their cultivar characteristics under the same irrigation condition for all cultivars, and sorted into several groups based on different growth condition; for the internode length (from 0 to 20th node), leaf area, and fruit weight, 'Kingstar' belonged to the largest group, 'Worldstar' the middle group, and 'Dalgona' the smallest group. After analyzing the results of the previous experiment, 'Dalgona', 'Worldstar', 'Kingstar', and 'Rubyball' were selected as test cultivars for the growth group in 2020, and irrigated according to different irrigation levels for each cultivar. The control of the irrigation volume for each melon cultivar by monitoring the drainage rate during the cultivation periods showed that all four cultivars required a similar amount of irrigation in the 'early growth' stage where crops grew at about the same rate. From 'flowering time', however, the change in irrigation requirements showed a similar tendency for 'Worldstar' and 'Kingstar' and for 'Rubyball' and 'Dalgona' respectively. A sudden change in each irrigation volume was observed from the fruit set; 'Dalgona' began first to decline and 'Rubyball' was second, followed by 'Worldstar' and 'Kingstar'. In conclusion, the irrigation volume was the largest in 'Kingstar', followed by 'Worldstar', 'Rubyball', and 'Dalgona' in the same order as the growing amount of plant length, leaf area, and fruit weight. Therefore, it is necessary to control exactly the irrigation volume by reflecting the unique growth characteristics of each cultivar for the production of high-quality fruit in melon hydroponics, and especially to use great care when different cultivars are cultivated together.

Suppression of Meloidogyne incognita in Lettuce and Oriental Melon by Pasteuria penetrans KW1

  • Lim, Chun-Keun;Yu, Yong-Man;Cho, Myoung-Rea;Zhu, Yong-Zhe;Park, Duck-Hwan;Hur, Jang-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.177-180
    • /
    • 2003
  • Pasteuria penetrans KW1 (PP), parasitic bacterium of nematode, was isolated from oriental melon greenhouse soil in Korea and evaluated for the suppression effect on the reproduction of southern root-knot nematode, Meloidogyne incognita (MI), in lettuce (Lactuca sativa L. var. Chungchima) and oriental melon (Cucumis melo L. var. Eunchun). Pot experiments were conducted by planting the lettuce seedlings in medium inoculated with 5,000 MI juveniles/pot (J), J +100,000 PP endospores/l g medium, and J +200,000 PP endospores/1 g medium. After 11 weeks of plantation, number of root galls in J +200,000 PP endospores/1 g medium was decreased to 92/root (38.9%, control effect), compared to the J of 150/root. In the second plantation of lettuce in the same pots, the numbers of root gall were significantly decreased in PP treated pots with 75 (77.2%, control effect) and 150/root (54.4%, control effect) in J +200,000 and J +100,000 PP endospores/1 g medium, respectively, compared to the J of 330/root when harvested at 10 weeks after planting. In oriental melon, root gall percentages were 32.1 (60.2%, control effect) and 52.9% (34.5%, control effect) in J +200,000 and J + 1(10,000 endospores/l g medium which were significantly lower than that of 80.7% in J.

Evaluation of Cultivation Characteristics according to NO3- Ratio of Nutrient Solution for Korean Melon in Hydroponic Culture (양액의 NO3- 비율이 수경재배 참외의 생육과 수량에 미치는 영향)

  • Do Yeon Won;Ji Hye Choi;Chang Hyeon Baek;Na Yun Park;Min Gu Kang;Young Jin Seo
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • Korean melon (Cucumis melo L.) is grown mostly in Northeast Asia area, and as a fruit mainly produced in Korea, the yield per unit area continues to improve, but the cultivation method is limited to soil cultivation, so it is necessary to develop hydroponic cultivation technology for scale and labor-saving is needed. As the ratio of NO3- increased, the plant height, the leaf length, the leaf width, and the internode length became longer and larger. On the other hand, the SPAD value decreased. The lower the ratio of NO3-, the faster the female flower bloom, and there was no difference in fruit maturity between treatments. There was no difference in the shape of fruit according to the ratio of NO3-, and the hardness was higher as the ratio of NO3- was lower. The total yield from March to July was KM3 5,650 kg/10a and KM1 4,439 kg/10a, 27% higher in KM3 and, in particular, 36% higher in quantity from March to May, when Korean melon prices were high season. Therefore, it was judged that it would be appropriate to supply NO3- suitable for hydroponic cultivation of Korean melon, which was formalized in December and produced from spring, at the level of 6.5 to 10 me·L-1.

The Incidence of Virus Diseases on Melon in Jeonnam Province during 2000-2002

  • Ko, Sug-Ju;Lee, Yong-Hwan;Cho, Myoung-Soo;Park, Jin-Woo;Choi, Hong-Soo;Lim, Geun-Cheol;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.215-218
    • /
    • 2007
  • The occurrence and relative incidence of viruses including Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Papaya rings pot virus (PRSV), and Watermelon mosaic virus (WMV), Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Melon necrotic spot virus (MNSV) were surveyed from main melon (Cucumis melo L.) production areas in Jeonnam province during 2000-2002. Virus disease incidences of melon cultivating fields were 0% and 11% in spring and fall 2000; 40%, 2.1%, and 8.8% in spring, summer, and fall 2001; and 6.3 % in spring 2002 in main cultivated areas in Jeonnam province, respectively. Field disease incidences of melon virus infections were 0% and 18.8% in spring and fall 2000; 50%, 38.5%, and 82.6% in spring, summer, and fall 2001; and 47.4% in spring 2002, respectively. Total of 101 melon samples showing typical disease symptoms were collected from 2000 to 2002 and tested for virus infection by RT-PCR. Potyvirus-specific DNA fragments for WMV, ZYMV, and PRSV were amplified from 46, 5, and 4 samples, respectively. MNSV specific DNA fragment was amplified from 18 samples. CMV-specific DNA fragment was detected from only 3 samples.

Development of Passive Nutrient Supplying System and Its Effects on the Growth of Muskmelon (Cucumis melo L.) (수동방식 양액공급 시스템 개발과 멜론 재배 효과)

  • Nam, Sang-Sik;Oh, Yong-Bee;Kim, Yong-Bum;Choi, In-Hu
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.338-341
    • /
    • 2001
  • A new passive nutrient supplying system (PNS) was designed. The experiment was conducted to compare PNS with automatic hydroponic system (AHS) by investigating the growth characteristics of muskmelon (Cucumis melo L.) in spring and summer. No significant differences in growth characteristics of leaf area and shoot dry weight were observed between PNS and AHS. However, better netting of melon fruit was shown in PNS. Sugar content of melon fruit was also $1.0-2.0Brix^{\circ}$ higher in PNS than in AHS. The suitable substrate for melon culture with PNS was the mixture of perlite 70% and rice hull 30%. These results suggested that new PNS could be introduced to growers without any loss of fruit yield and quality of muskmelon.

  • PDF

Effects of Nitrogen and Potassium Fertigation on Growth, Yield and Quality of Musk Melon (Cucumis melo. L) (시설멜론의 관비재배를 위한 질소와 칼륨의 관비수준 설정)

  • Rhee, Han-Cheol;Park, Jin-Meun;Seo, Tae-Cheol;Choi, Gyoeng-Lee;Roh, Mi-Young;Cho, Myeung-Whan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • This study was conducted to identify optimal concentrations of N (nitrogen) and K (Potassium) fertilizers on growth, yield and quality of melon (Cucumis melo. L) when they were grown with a fertigation culture in a greenhouse. Three strength (S) levels of fertilizers, including 1 S, 1/2S, and 1/4S were supplied N and K nutrients as using a trickle irrigation system. When the strength level of fertilizers was increased from 1/4S to 1 S, the level of EC (electronic conductivity) in soil was increased. Soil-water tension was ranged between -15 and -20kPa until fruit setting stage, whereas it was ranged between -45 and -50kPa in the later growth stages. In results, N fertilizer had effects on fruit yield and quality. A higher fruit yield was observed when plants were supplied with 1 S and 1/2S level of N fertilizer. The highest yield of marketable fruit, about 5,086kg/10a, was also observed when plants were supplied with 1/2S N fertilizer. A higher net index and sugar content of fruit was observed in the treatments of 1/2S and 1/4S level of N fertilizer compared to 1 S level. In contrast, there was no statistic difference in the yield and quality with three levels of K fertilizer. Results indicate that the 1/2S level for N and 1/4S level for K fertilizer are effective and optimal for the melon plants grown under the fertigation culture in terms of increasing fruit yield and quality and reducing the cost of fertilizers.

Effects of Soil Addition and Subsoil Plowing on the Change of Soil Chemical Properties and the Reduction of Root-Knot Nematode in Continuous Cropping Field of Oriental Melon (Cucumis melo L.) (시설참외 연작재배지 토양의 객토 및 심토반전이 토양 화학성 변화와 토양선층 억제효과에 미치는 영향)

  • Jun, Han-Sik;Park, Woo-Chul;Jung, Jae-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • To elucidate the effect of soil addition and subsoil plowing on the change of sell chemical properties and the reduction of root-knot nematode, this experiment carried out in continuous cropping field of protected oriental melon (Cucumis melo L.). Soil addition reduced electric conductivity (E. C.) from 4.3 to 1.8 dS/m (58%), available $P_2O_5$ from 406 to 182 mg/kg (55%) and organic matter content from 16 to 11 g/kg (31%). Population densities of root-knot nematode in soil reduced as much as 89%, 84%, and 69% at first year, third years, and of five years later, respectively The effects of subsoil plowing were similar to that of soil addition. E. C. and phosphate were reduced from 4.30 to 1.98 dS/m (54%) and phosphate from 406 to 329 mg/kg (19%), respectively. Population densities of root-knot nematode reduced as much as 71%, 67%, and 42% after 1, 3, and 5 years, respectively Subsoil plowing reduced nematode densities only for three years.