• Title/Summary/Keyword: Meloidogyne hapla

Search Result 51, Processing Time 0.034 seconds

Hydrogen Cyanide Produced by Pseudomonas chlororaphis O6 Exhibits Nematicidal Activity against Meloidogyne hapla

  • Kang, Beom Ryong;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.35-43
    • /
    • 2018
  • Root-knot nematodes (Meloidogyne spp.) are parasites that attack many field crops and orchard trees, and affect both the quantity and quality of the products. A root-colonizing bacterium, Pseudomonas chlororaphis O6, possesses beneficial traits including strong nematicidal activity. To determine the molecular mechanisms involved in the nematicidal activity of P. chlororaphis O6, we constructed two mutants; one lacking hydrogen cyanide production, and a second lacking an insecticidal toxin, FitD. Root drenching with wild-type P. chlororaphis O6 cells caused juvenile mortality in vitro and in planta. Efficacy was not altered in the fitD mutant compared to the wild-type but was reduced in both bioassays for the mutant lacking hydrogen cyanide production. The reduced number of galls on tomato plants caused by the wild-type strain was comparable to that of a standard chemical nematicide. These findings suggest that hydrogen cyanide-producing root colonizers, such as P. chlororaphis O6, could be formulated as "green" nematicides that are compatible with many crops and offer agricultural sustainability.

Some Medicinal Plants Suppressed Reproduction of Meloidogyne hapla on Codonopsis lanceolata Trautv (더덕에서 약용식물을 이용한 당근뿌리혹선충 증식 억제 효과)

  • Lim, Ju-Rak;Hwang, Chang-Yeon;Ryu, Jeong;Choi, Yeong-Geun
    • Korean journal of applied entomology
    • /
    • v.45 no.3 s.144
    • /
    • pp.347-355
    • /
    • 2006
  • Possible nematicidal effects of plant extracts of 25 species uninfected by M. hapla were observed at the 5 times dilutions in all treatments and at the 10 times dilutions in Anemarrhena asphodeloides, Acorus calamus, Achyranthes japonica, Agrimonia pilosa, Dianthus chinensis, Geum aleppicum, Houttuynia cordate, Rudbeckia bicolor, Ricinus communis, Scrophularia buergeriana, Sesamum iindicum, Sedum kamtschaticum, and Sanguisorba officinalis. The 13 species plant extracts of 5 times dilutions were evaluated for the suppression effects on reducing densities of M. hapla by treating to C. lanceolata sown and transplanted later in pots. All the plant extracts showed suppressive effects on M. hapla except for.A. pilosa. The suppressive effects of A. asphodeloides, A. japonica, A. calamus, D. chinensis, R. communis, and S. buergeriana were over 80%. When the selected plants had been incorporated into the soil before C. lanceolata was sown, the numbers of root galls, egg sacs and $J_{2}$ appeared lower in the treatment of 12 plant species than in control except for S. indicum. But the suppressive effects were lower than the effects of selected plants being cultivated simultaneously in the field. A. calamus and A. japonica exhibited over 70% suppressive effects, among the tested plants.

Attachment of Pasteuria penetrans Endospores to Meloidogyne spp. Juveniles Affected by Temperatures and the Nematode species (선충기생세균(Pasteuria penetrans) 내생포자의 뿌리혹선충(Meloidogyne spp.) 유충 부착에 대한 온도와 선충종의 영향)

  • Cho, Myoung Rae;Kim, Hyung Hwan;Kang, Taek Joon;Ahn, Seung Joon;Yang, Chang Yul;Jeon, Sung Wook
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.109-113
    • /
    • 2013
  • A greenhouse soil infested with an obligate nematode parasitic bacterium, Pasteuria penetrans, was used to test the effect of temperatures on the endospore attachment to root-knot nematode, Meloidogyne arenaria, juveniles (J2). Freshly hatched J2s were inoculated to the soil in petri dish and incubated under different temperatures of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$ for 7 days. The endospore attachment rates were 100% in all the temperatures, while the number of endospores attached per J2 was highest in $25^{\circ}C$ with 28.3 endospores/J2 followed by 20.2, 18.6, and 13.6 in $30^{\circ}C$, $20^{\circ}C$, and $35^{\circ}C$, respectively. When the soil was pre-treated under different temperatures before the J2 inoculation, the endospore attachment rates significantly decreased from 60% in room temperature to $25^{\circ}C$, 31.7, 8.3, 5.0, and 0% after the soil incubation in $-30^{\circ}C$, $4^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $100^{\circ}C$ for 10 days, respectively. The endospore numbers attached per J2 were 3.5, 4.3, 1, 1, and 0 when the soil was pre-treated in $-30^{\circ}C$, $4^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $100^{\circ}C$, respectively, which were lower than 5.3/J2 of room temperature treated soil. The P. penetrans isolate in the soil showed nematode species-specific endospore attachment characteristics with 100% attachment rate only on M. arenaria J2s while the rates were 0% on M. hapla and M. incognita J2s.

Occurrence and Distribution of Root-Knot Nematodes in Kiwifruit Orchard (국내 주요 참다래 재배지에 발생하는 뿌리혹선충 종류 및 분포)

  • Heonil Kang;Hwanseok Je;Insoo Choi
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • The study was conducted to investigate the infestation and distribution of plant-parasitic nematodes on kiwi orchards in Korea. Plant parasitic nematodes genus and densities were investigated at a total of 102 sites in Jeollanam-do, Gyeongsangnam-do, and Jeju-do, which are the main production areas of domestic kiwi orchards. Plant parasitic nematodes detected were of 9 genera, including root-knot nematodes (Meloidogyne spp.), spiral nematodes (Helicotylenchus spp.), and needle nematodes (Paratylenchus spp.), and 56% of the 102 plantations were infected with root-knot nematodes. Root-knot nematodes were found to be the most important plant parasitic nematode in domestic kiwi orchards. The average density of root-knot nematodes is 97 per 300 cm3 soil, and there is concern about the kiwi yield reduction. As a result of identifying the root-knot nematode species: M. arenaria, M. hapla, M. incognita, and M. javanica. Among them, M. arenaria is the most dominant. As the plant parasitic nematode infection route in fruit trees is often spread through the transplantation of infected seedlings, attention should be paid to the production of nematode-free plants during the production and supply of kiwifruit plants.

Incidence and Identification of Root-Knot Nematode in Plastic-House Fields of Central Area of Korea (중부지방 시설재배지의 뿌리혹선충 감염현황 및 종 동정)

  • Ko, Hyoung Rai;Kim, Eun Hwa;Kim, Se Jong;Lee, Jae Kook
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.348-354
    • /
    • 2017
  • To investigate occurrence of root-knot nematode (RKN) in plastic house of central area of Korea, 132 soil samples were collected in cucumber, water melon, tomato, red pepper and strawberry fields from 2013 to 2015. Among 132 soil samples, 65 soil samples (49%) were infested with RKN and mean density of RKN was 178 second-stage juveniles per $100cm^3$ soil (min. 1 ~ max. 3,947). The frequency of RKN by regional was the highest in Chuncheon with 80%, followed by Cheonan (68%), Nonsan (36%), Buyeo (33%) and Yesan (30%). The frequency of RKN by crops was the highest in tomato with 83%, followed by cucumber (61%), strawberry (41%), red pepper (30%), watermelon (26%). To identify the species of RKN, fifteen populations were selected for representative populations. As a phylogenetic analysis of 15 populations, southern root-knot nematode (Meloidogyne incognita), peanut root-knot nematode (M. arenaria) and northern root-knot nematode (M. hapla) were identified with 47%, 20% and 33% ratio, respectively. In crops, M. incognita, M. arenaria and M. hapla were detected in tomato, M. incognita and M. arenaria were detected in cucumber and watermelon, and M. hapla was detected in strawberry and lettuce. Thus, there should be a continuous management to major species of each crops to prevent dispersal of RKN damages.

Evaluation for Biocontrol Potentials of Nematophagous Fungi against Root-knot Nematode (뿌리혹 선충에 대한 선충 천적 기생균의 생물적 방제 효과)

  • 정미정;장성식;김희규;박창석;추호렬
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.382-388
    • /
    • 1993
  • Five nematophagous fungi, Arthrobotrys arthrobotryoides, A. conoides, A. oligospora, Dactylella lobata and Fusarium oxysporum were evaluated for nematicidal effect on Meloidogyne hapla in greenhouse. Treatment of nematophagous fungi reduced the root galling by M. hapla and increased red-pepper growth in naturally infested pot soil. Number of galling were significantly less inall pots in 4 different inoculum densities of 5 nematophagous fungi compared to untreated plots. Especially, treatment of F. oxysprum resutled significant reduction of root gall of red-pepper. The increased shoot growth was significantly higher in pretreated plots by A. arthrobotryoides, A. conoides, A. oligospora, D. lobata and F. oxysporum at inoculum concentration of 1:100 but other treatments were not significantly increased shoot growth. Two promising fungi, D. lobata and F. oxysporum were selected in greenhouse test and in vitro results of previously experiment and applied to field plot naturally infested by M. hapla serverely. Number of galls were remarkably fewer in plots treated with D. lobata and F. oxysporum at either 1:70 or 1:100 concentration compared to the untreated plots. The shoot growth of red-pepper was increased strikingly in the plots following the red-pepper was increased strikingly in the plots following the treatment of both fungus than greenhouse test.

  • PDF

Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi

  • Seo, Hye Jeong;Park, Ae Ran;Kim, Seulbi;Yeon, Jehyeong;Yu, Nan Hee;Ha, Sanghyun;Chang, Ji Yoon;Park, Hae Woong;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.662-673
    • /
    • 2019
  • Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 ㎍/ml), lactic acid (7,790 ㎍/ml), malic acid (470 ㎍/ml), and succinic acid (660 ㎍/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.

Field Application of Egg and Larval Parasitic Fungi and Chemicals for Controlling Root-knot Nematodes on Some Medicinal Herb (몇종의 선충천적 진균과 화학약제를 이용한 약용작물 뿌리혹선충 방제효과 검토)

  • 박소득;추연대;정기채;심용구;최영연
    • Korean journal of applied entomology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 1993
  • Series of studies were conducted to establish biological and chemical control method for Meloidogyne spp to medical herbs by applied of nematophagous fungi, Arthrobotrys spp, Fusarium spp, and egg parastic fungi, Paecilomyces lilacinus were applied for root-knot nematodes on medicinal herbs, Paeonia albiflora, Codonopsis lanceolata, Cnidium officinale. The results are as follow. In pot experiments, The no. of root gall and egg mass and larvae of Cnidium officinale. The results are as follow. In pot experiments. The no. of root gall and egg mass and larvae of Cnidium officinale, Codonopsis lanceolata, Paeonia japonica lowered in P. Lilacinus treated plots compare to untreated control plots. But A. thaumasia F. oxysporum treated plots were less effective. Effect of egg parasitic fungi and chemical treatment at divided root of Paeonia japonica after sterilized in pot were increased in the fresh weight, root weight, control effect in P. lilacinus treated plots as chemical, Carbo G treated plots compare to untreted control plots. I field experiment, the number of root gall, egg mass and nematode density of Paeonia were also suppressed in P. lilacinus treated plots. It was very effective continuous 2 years and transplanting time on Paeonia japonica infested soil with the M. hapla in field in both region, Chillgok and Euisung treated P. lilacinus as chemical treated plots. Soaking effect of insecticide for Paeonia japonica at diving shoot before transplating in pot were effective for 12hours immersion into 1,000 ppm of Benlate T + Mep Ec, Benlate T + Fenthion EC in pot and field Experiment. In the Examination of fungi activily on P.japonica field 1 year after soil treatment, Number of spore of P. lilacinus were 1,000~1,300 in 3 region except Euisung.

  • PDF

A Novel Negative Regulatory Factor for Nematicidal Cry Protein Gene Expression in Bacillus thuringiensis

  • Yu, Ziquan;Bai, Peisheng;Ye, Weixing;Zhang, Fengjuan;Ruan, Lifang;Yu, Ziniu;Sun, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1033-1039
    • /
    • 2008
  • A 3-kb HindIII fragment bearing the cry6Aa2 gene and the adjacent and intergenic regions was cloned from Bacillus thuringiensis strain YBT-1518. Two open reading frames (ORFs), namely, orf1 (termed cry6Aa2) and orf2 that were separated by an inverted-repeat sequence were identified. orf1 encoded a 54-kDa protein that exhibited high toxicity to the plant-parasitic nematode Meloidogyne hapla. The orf2 expression product was not detected by SDS-PAGE, but its mRNA was detected by RT-PCR. The orf2 coexpressed with orf1 at a high level in the absence of the inverted-repeat sequence, whereas, the expression level of otfl was decreased. When orf2 was mutated, the level of orf1 expression was enhanced obviously. In conclusion, the inverted-repeat sequence disturbs orf2 expression, and the orf2 downregulates orf1 expression. This is an example of novel negative regulation in B. thuringiensis and a potential method for enhancing the expression level of cry genes.

Occutrrence of Root-knot Nematodes in Sweet Potato Fields and Resistance Screening of Sweet Potato Cultivars (고구마 재배지의 뿌리혹선충 발생 상황 및 품종별 저항성 반응)

  • Choi, Dong-Ro;Lee, Jae-Kook;Park, Byeong-Yong;Chung, Mi-Nam
    • Korean journal of applied entomology
    • /
    • v.45 no.2 s.143
    • /
    • pp.211-216
    • /
    • 2006
  • Total of 36 sweet potato field soils were sampled to survey the occurrence of the root-knot nematodes (RKN). The 61% of sweet potato fields in Haenam, 40% in Iksan and 31% in Yeju were infested with RKN, respectively. Average population density of RKN was 324 juveniles per 300 g soil. The resistance screening of sweet potato cultivars against RKN was carried out by using clay pots in a greenhouse. Average temperature under ground 10 cm in pot was 21.5$^{\circ}C$ during the test. There was no difference in number of egg sacs among different inoculation methods, however the egg-inoculation method was easy for treatlnent and had stable far results. The multiplication ratio of Melioidogyne incognita differed from 6.3 times (Jeungmi) to 63.2 times (Yulmi) by sweet potato cultivas. There were no cultivars showing resistance to M. incognita, but Jinmi, Jeungmi and Borami had resistance to if arenaria, M. hapla and M. javanica.