• Title/Summary/Keyword: Melibiose.

Search Result 49, Processing Time 0.018 seconds

Synthesis of galactosylglycerol from Melibiose as M-5 Intermediate (Melibiose로부터 M-5중간체 galactosylglycerol의 합성)

  • 차배천
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.575-581
    • /
    • 2001
  • The galactolipid M-5, which showed anti-inflammatory activity is glycoglycerolipid isolated from the Okinawa marine sponge Phyllospongia foliascens. Glycolipids have been synthesized by various methods, especially it were generally known that synthetic method of M-5 analogue and synthetic method of various glycolipids by glycosidation after synthesis of glycerolipid part. The others, it was not suggested that synthetic method via glycosylglycerol obtained by degradation from diglycoside. This study was carried out to investigate the synthesis of galactosylglycerol from melibiose as M-5 intermediate. Synthesis of galactosylglycerol was accomplished by selective protection of hydroxy group of sugar and diol cleavage by Pb(OAc)$_4$. As a result, galactosylglycerol was synthesized by 8 steps pathway and their structures were elucidated by analysis instrument.

  • PDF

Induction of Melibiase in Yeast

  • Park, Sang-Shin
    • Journal of Plant Biology
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 1964
  • Exposing yeast cells with a certain genotype to different inducers, the ability of the yeast cells (Saccharomyces cerevisiae) to obtain enhanced fermentation for carbohydrates was observed. Regardless of the preexposure to any substrate, the inherent character incapable of fermenting a certain carbohydrate was maintained, while utilization of carbohydrates by the cells with a certain gene markers was varied by the previous conditions where they were exposed. Galactose was the best inducer for the cells to elaborate melibiase, even the galactose was not utilized as a substrate. Preexposure to galactose seemed to be necessary for the cells to utilize galactose and melibiose. Galactose fermentation by GA cells was enhanced by the exposure of the cells to galactose, but not to melibiose, raffinose, sucrose or glucose. Delayed fermentation of sucrose by the cells exposed to glucose or melibiose, but not to galactose, was observed. Raffinose fermentation was obtained by the cells with either SU RAF or GA ME genes, but the enhanced fermentation of raffinose seemed to be dependent on which inducer the cells were exposed previously and enzymes induced by the inducer to break either one of the linkages of raffinose molecule, the alpha0galactosidic or the beta-fructo-furanosidic.

  • PDF

Hydrolysis Activity of ${\alpha}-Galactosidase$ from Bacillus licheniformis (Bacillus licheniformis로부터 생산된 ${\alpha}-Galactosidase$의 가수분해 활성)

  • Kim Hyun Suk;Lee Kyung-Seob;So Jae Ho;Yoon Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • The maximum productivity of ${\alpha}-galactosidase,$ capable of hydrolyzing completely ${\alpha}-D-l,6-galactopyranosyl$ linkages within oligomeric substrates such as melibiose, raffinose and stachyose to liberate galactose residue, was reached to 718 mU/ml in the culture filtrate of Bacillus licheniformis at death phase. The ${\alpha}-galactosidase$ was identified to show different efficiencies for hydrolyzing the ${\alpha}-galactooligosaccharides$ according to analysis of reaction products by both TLC and quantification of the liberated reducing sugars. The enzyme was active on ${\alpha}-galactooligosaccharides$ in the order of melibiose, raffinose, and stachyose. Though the hydrolyzing activity of enzyme was faintly inhibited by reaction products such as galactose, glucose and sucrose with amounts of five folds more than the added substrates (20 mM), the largest inhibition of enzyme activity was caused by galactose among the end products. Unknown compound, which migrated slower than melibiose on TLC, was detected during hydrolysis reaction of melibiose, suggesting that the ${\alpha}-galactosidase$ has a glycosyl transferase activity. In addition, the enzyme was able to hydrolyze efficiently raffinose and stachyose existed in the soluble extract of soybean meal.

Characterization of Extracellular $\alpha$-Galactosidase Produced by Bacillus licheniformis YB-42. ($\alpha$-Galactosidase를 생산하는 Bacillus lichennformis YB-42의 분리와 효소 특성)

  • 김현숙;이경섭;소재호;이미성;최준호;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • A bacterium producing the $\alpha$-galactosidase was isolated from Korean soybean paste. The isolate YB-42 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. The $\alpha$-galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-42. The partially purified extracellular $\alpha$-galactosidase was obtained from the culture supernatant by DEAE-Sepharose column and Q-Sepharose column chromatography. The enzyme showed the maximum activity for hydrolysis of para-nitrophenyl-$\alpha$-D-galactopyranoside (pNP-$\alpha$Gal) at pH 6.5 and $45^{\circ}C$. It was able to hydrolyze oligomeric substrates such as melibiose, raffmose and stachyose to liberate galactose residue, indicating that the a-galactosidase of B. licheniformis YB-42 hydrolyzed $\alpha$-1,6 linkage. The hydrolyzing activity of $\alpha$-galactosidase for both pNP-$\alpha$Gal and melibiose was dramatically decreased by galactose. Both glucose and mannose inhibited the activity for pNP-$\alpha$Gal less than galactose.

Characterization of the $\alpha$-Galactosidase Gene from Leuconostoc mesenteroides SY1

  • KIM JONG HWAN;PARK JAE-YONG;JEONG SEON-JU;CHUN JIYEON;LEE JONG HOON;CHUNGZ DAE KYUN;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.800-808
    • /
    • 2005
  • Leuconostoc mesenteroides SY1, an isolate from kimchi, was able to ferment $\alpha$-galactosides, such as melibiose and raffinose. $\alpha$-Galactosidase ($\alpha$-Gal) activity was higher in cells grown on melibiose and raffinose than cells grown on galactose, sucrose, and fructose. $\alpha$-Gal activity was not detected in cells grown on glucose, indicating the operation of carbon catabolite repression (CCR). A 6 kb DNA fragment was PCR amplified using a primer set based on the nucleotide sequence of a putative $\alpha$-galactosidase gene (aga) from L. mesenteroides ATCC 8293. Nucleotide sequencing of the 6 kb fragment confirmed the presence of aga and other genes involved in the galactosides utilization, and the gene order was galR (transcriptional regulator)-aga-gaIK (galactokinase)-gaIT (galactose-1-phosphate uridylyltransferase). Northern blotting experiment showed that aga, gaIK, and gaIT constituted the same operon, that the transcription was induced by galactosides, such as melibiose and raffinose, whereas gaIR was independently transcribed as a monocistronic gene, and that the level of transcription was fairly constant. The aga was overexpressed in E. coli BL21 (DE3) using pET26b(+) vector, and $\alpha$-Gal was accumulated in E. coli as an inclusion body.

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.

Characterization of Extracellular \alpha-galactosidase Produced by Streptomyces sp. YB-4. (균체외 \alpha-galactosidase를 생산하는 Streptomyces sp. YB-4의 분리 및 효소 특성)

  • 김소영;조기행;김창진;박동진;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2002
  • A strain YB-4 producing the extracellular $\alpha$-galactosidase was isolated from soil, and has been identified as Streptomyces sp. on the basis of its cultural, morphological and physiological properties. The partially purified $\alpha$-galactosidase was most active on paranitrophenyl-$\alpha$-D-galactopyranoside at pH 6.0 and 6$0^{\circ}C$. The enzyme retained 90% of its maximum activity between pH 4.0 and pH 10.0 after pre-incubation for 1 h. The enzyme was able to hydrolyze oligomeric substrates such as melibiose, raffinose and stachyose to liberate galactose residue, indicating that the $\alpha$-galactosidase of Steptomyces sp. YB-4 hydrolyzed $\alpha$-1,6 linkage.

Purification and Characterization of α-Galactosidase from Lactobacillus salivarius subsp. salivarius Nam27

  • Bae, Hyoung-Cchurl;Choi, Jong-Woo;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.102-109
    • /
    • 2007
  • Lactobacillus salivarius subsp. salivarius CNU27 possessed a high level of ${\alpha}$-galactosidase activity. Purified ${\alpha}$-galactosidase was obtained after sonication of harvested cell pellet followed by DEAE-Sephadex A-50 and Mono Q anion exchange chromatography. The specific activity of the purified enzyme was 8,994 units/mg protein which is 17.09 times higher than that in crude extract. The native enzyme was a monomer with a molecular mass of 56,397.1 dalton. The optimum temperature and pH for the enzyme were $40^{\circ}C$ and 6.0, respectively. The enzyme was stable between 25 and $50^{\circ}C$. However, ${\alpha}$-galactosidase activity was lost rapidly below pH 4.5 and above pH 8.5. The enzyme activity decreased to 6.73% and 4.30% of the original activity by addition of $Cu^{2+}$ and $Hg^{2+}$, respectively. Other metal compounds did not affect the enzyme activity significantly. The enzyme liberated galactose from melibiose, raffinose, and stachyose. The rate of substrates hydrolysis was measured by HPLC. Raffinose, stachyose and melibiose were completely decomposed after 24 hr at $40^{\circ}C$.

Studies on the Clostridium bovis sp. nov., the predominant species isolated from the feces of Holstein cattle (홀스타인 젖소의 분변에서 우세균종으로 분리되는 새로운 Clostridium bovis 에 관한 연구)

  • Lee, Wan-kyu
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.99-105
    • /
    • 1994
  • Clotridium bovis sp. nov, is described on the basis of 5 strains isolated from the feces of Holstein cattle. The isolate are gram-positive, motile, strict anaerobic spore forming rods. They differ from all the validly described related species of the genus Clostridium in carbohydrate fermentation pattern, G+C mol% and DNA homologies. Acid is produced from arabinose, xylose, glucose, mannose, fructose, galactose, sucrose, maltose, cellobiose, lactose, trehalose, melibiose, raffinose, inulin and salicin. Major end products in PYFG broth are large amounts of butyric acid and lactic acid, and trace amounts of acetic and succinic acids. The G+C mol% of DNA from the type strain is 26 mol%. The type strain of Clostridium bovis is Catt $66^T$ strain.

  • PDF