• 제목/요약/키워드: Melanocortin receptor 1(MC1R) gene

Search Result 34, Processing Time 0.026 seconds

Effects of Genotype Mutation and Coat Color Phenotype on the Offspring from Mating System of MC1R Genotype Patterns in Korean Brindle Cattle (칡소의 MC1R의 유전자형에 따른 교배 조합이 자손의 모색과 유전자형 변이에 미치는 영향)

  • Kim, Sang-Hwan;Jung, Kyoung-Sub;Lee, Ho-Jun;Baek, Jun-Seok;Jung, Duk-Won;Kim, Dae-Eun;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.215-222
    • /
    • 2013
  • Bovine coat color is decided by the melanocortin receptor 1 (MC1R) genotype mutation and melanogenesis. Specially, in the various cattle breeds, dominant black coat color is expressed by dominant genotype of $E^D$, red or brown is expressed in the frame shift mutation of recessive homozygous e by base pair deletion and wild type of $E^+$ is expressed in various coat colors. However, not very well known about the effected of MC1R genotype mutation on the coat color through family lines in KBC. Therefore, this study were to investigate effect of MC1R genotype mutation on the coat color, and to suggest mating breed system in accordance with of MC1R genotype for increased on brindle coat color appearance. Parents (sire 2 heads and dam 3 heads) and offspring (total : 54 heads) from crossbreeding in KBC family line with the MC1R genotype and phenotype records were selected as experimental animals. The relationship between melanocortin 1 receptor (MC1R) genotypes expression verified by PCR-RFLP, and brindle coat color appearance to the family line of the cross mating breed from MC1R genotype pattern was determined. As a result, 4MC1R genetic variations, $E^+/E^+$ (sire 1), $E^+/e$ (sire 2 and dam 3), $E^+/e$ with 4 bands of 174, 207 and 328 bp (dam 1) and $E^+/e$ with 3 bands of 174, 207, 328 and 535 bp (dam 2) from parents (sire and dam) of KBC. However, 3 genetic variations, e/e (24%), $E^+/E^+$ (22%) and $E^+/e$ (56%) were identified in offspring. Also, brindle coat color expressrated was the e/e with the 0%, $E^+/E^+$ with 67% and $E^+/e$ with 77% from MC1R genotype in offspring on the cross mating of KBC. Furthermore, when the sire had $E^+/e$ genotype and the dam had $E^+/E^+$ with the 3 bands or $E^+/e$ genotype, and both had whole body-brindle coat color, 62% of the offspring had whole body-brindle coat color. Therefore, the seresults, the mating system from MC1R genotype patterns of the sires ($E^+/e$) and dams ($E^+/E^+$ with the 3 bands or $E^+/e$) with brindle coat color may have the highest whole body-brindle coat color expression in their offspring.

Discrimination of Hanwoo from Holstein/black Angus meat by PCR-RFLP of MC1R gene (MC1R 유전자의 PCR-RFLP를 이용한 한우육과 젖소육/black Angus 수입육의 구분)

  • Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.3
    • /
    • pp.335-339
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo, we performed a modified PCR-RFLP analysis of MC1R gene using single nucleotide polymorphism (SNP) within MC1R as a target. A size of 538 bp (537 bp for Hanwoo) was amplified by PCR, digested with Hpa II, and electrophoresed on a 1.5% agarose gel. A PCR product from Hanwoo showed a single band of 537 bp, whereas two fragments of 328 bp and 210 bp were detected in both Holstein and Black angus. The current result suggests that the PCR-RFLP using our primers and enzyme digestion system would be very accurate, easy and reproducible method to discriminate between Hanwoo and Holstein/Black angus meat.

Application of the melanocortin 1 receptor (MC1R) gene for discrimination of Hanwoo from Holstein beef using real-time polymerase chain reaction (PCR)

  • Ra, Do-Kyung;Lee, Sung-Mo;Park, Eun-Jeong;Lee, Jung-Goo
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.557-562
    • /
    • 2007
  • This study was carried out to discriminate Hanwoo from the milking and hybrid cattle by detection of MC1R gene related to bovine hair color. One hundred sixty six samples were collected from the abattoir (n = 106) and local market (n = 60). The beef from abattoir were originated from Hanwoo (n=27), Holstein (n=29), Hybrid (n=45) and imported cattle (n=5), respectively. The beef from market consisted of Hanwoo (n=36), Holstein (n=7) and imported ones (n=17). Commercialized screening kit (Kogenebiotec, Korea) was used for MC1R gene analysis. As a result, Hanwoo was discriminated from Holstein. However, 9 of 45 hybrid and 11 of 22 imported beef samples were indistinguishable from Hanwoo. It could be explained by second generation of crossing of Hanwoo with Holstein or the cattle with silver or yellow hair. This results suggest that additional tests as well as MC1R gene detection be needed to confirm Hanwoo beef among cattle beef.

Rapid differentiation of Hanwoo and Holstein meat using multiplex allele specific polymerase chain reaction protocols (Multiplex allele specific PCR 방법을 이용한 한우고기와 젖소고기의 신속한 판별)

  • Koh, Ba-Ra-Da
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.3
    • /
    • pp.351-357
    • /
    • 2005
  • Here I describe a multiplex allele specific PCR-based approach for the rapid detection between Hanwoo and Holstein meat associated with Melanocortin 1 receptor (MC1R) gene. Specific and universal oligonucleotide primers were used in combination to detect the presence of a single nucleotide polymorphism within the bovine MC1R DNA sequence. The presence of the bovine MC1R gene is indicated by the production of a single control PCR product, whilst positive samples generate an alternative smaller specific product over the same region. The mutations in MC1R104 codon revealed depending on the presence or absence of an indicative fragment amplified from the wild-type allele of this codon. As little as 0.39 ng and 1.56 ng of genomic DNA of Hanwoo and Holstein could be detected by MAS-PCR assay, respectively. This technique, which is widely used in human genetic screening, provides a reliable and sensitive result that has not been documented for the identification of bovine coat color. The MAS-PCR assay approach was proven to be useful in complementing routine beef DNA analysis for differentiation of these MC1R variants and it would facilitate the screening of deceiving sales of Holstein meat in the butcher shop.

Analysis of the Genotype Distribution in Cattle Breeds Using a Double Mismatched Primer Set that Discriminates the MC1R Dominant Black Allele (소 MC1R 우성흑모색 대립인자를 구분하는 변형 프라이머를 이용한 소 품종들의 유전자형 분포 분석)

  • Han, Sang-Hyun;Kim, Young-Hoon;Cho, In-Cheol;Jang, Byoung-Gui;Ko, Moon-Suck;Jung, Ha-Yeon;Lee, Sung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.633-640
    • /
    • 2008
  • With a double mismatch primer set designed for amplifying the modified DNA sequence fragments, bovine melanocortin-1 receptor(MC1R) gene encoded in Extension locus which plays a critical role in coat color development was analyzed using polymerase chain reaction mediated restriction fragment length polymorphism(PCR-RFLP). Amplified PCR fragments were successfully discriminated with combining the MspI- and AluI-RFLP into three major alleles(ED, E+, and e), directly related to bovine coat color phenotypes. The genotyping results showed that Jeju black cattle contained three MC1R alleles, but yellowish-red colored Hanwoo and bridle colored Korean Brindle cattle did not contained the dominant black allele ED. However, two dominant black-colored cattle breeds, Holstein and Angus, contained the ED allele over 96% in frequency. Hanwoo×Holstein F1 and Hanwoo×Angus F1 crossbred calves showed ED/e MC1R genotypes, and uniformly black coat color. the results suggested that this MC1R genotyping method be useful in allele discrimination for bovine MC1R gene which used for breed classification and characterization, as one of the important genetic markers, using combination of MspI- and AluI-RFLP for modified PCR product amplified with a newly designed double mismatch primer set.

Development of Melanotropin Antagonists: Investigating Potent and Specific Ligands for New Receptors

  • Lim, Sejin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.153-159
    • /
    • 1996
  • ${\alpha}$-Melanotropin (Ac-Ser-Tyr- Ser-Met-Glu$\^$5/-His-Phe-Arg-Trp-Gly$\^$10/-Lys-Pro-Val-NH$_2$) is one of the first peptide hormones to be isolated and have its structure determined. It was early recognized to have essentially the same N-terminal tridecapeptide sequence as adrenocorticotropic hormone (ACTH) except that the N-terminal was acetylated in the case of ${\alpha}$-MSH but not in the case of ACTH, indicating that their biosyntheses were different (Figure 1). Subsequently it was discovered that ${\alpha}$-MSH and ACTH were derived from the same gene, currently referred to as proopiomelanocortin (POMC). Its original bioactivity was pigmentation, but it also was recognized that it may have activity in the central nervous system, though the precise nature of these central activities have been controversial. The recent cloning and expression of five melanocortin receptors, with the MC3 and MC4 receptors found primarily in the brain and the MC5 receptor (MC5-R) found throughout the body, has provided new impetus to understand the structure-activity relationships of ${\alpha}$-MSH at these receptors. The effects of ${\alpha}$-MSH on pigmentation are mediated by the MC1-R expressed specifically on the surface of melanocytes. Similarly the MC2-R is involved in the regulation of adrenal steroidogenesis by ACTH. However, given the complexity of expression of the MC3, MC4, and MC5 receptors, it has not been possible to identify any simple correlations between these receptors and the reported biological activities of the melanocortin peptides. Consequently, potent and receptor specific agonists and especially antagonists would be extremely valuable tools for the determination of the physiological roles of the MC3, MC4, and MC5 receptors. Though the extensive structure-activity relationships have provided much information on agonist activity related to pigmentary effects, only recently has it been possible to begin to systematically develop potent and selective antagonists.

  • PDF

Melanocyte-stimulating Hormone Receptor (MC1R) Genotype and Its Effects on Coat Color in Korean Jindo Dogs

  • Hong, Kyung-Won;Kim, Sang-Wook;Jang, Hong-Chul;Yang, Seung-Min;Shin, Young-Bin;Hong, Yoon-Hye;Kim, Jong-Seok;Oh, Seok-Il;Choi, Yoon-Ju;Chung, Dong-Hee;Yang, Boh-Suk;Lee, Ji-Woong;Choi, Bong-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1078-1084
    • /
    • 2009
  • The Jindo dog is a Korean natural monument and is recognized by the Fédération Cynologique Internationale. A prominent feature is the diverse coat color within the breed. To analyze the genetic basis of variation in the Jindo coat color, we sequenced the protein-coding regions of the melanocortin 1 receptor gene (MC1R). The MC1R coding sequence was determined from 154 dogs in five breeds (Jindo, Labrador Retriever, English Springer Spaniel, Belgian Malinois, and German Shepherd). To confirm the genetic structure of sampled populations, we tested for Hardy-Weinberg equilibrium (HWE) and computed $F_{st}$ The sample populations did not significantly deviate from HWE. $F_{st}$ was 0.02 between white and fawn Jindo dogs; this was lower than $F_{st}$ between breeds. Six single nucleotide polymorphisms (SNPs) were detected in the MC1R coding region. Among the six SNPs, five were non-synonymous (S90G, T105A, Q159P, M264V, and R306ter) and one was synonymous SNP (Y298Y). From the SNPs, we predicted four haplotypes (H1, H2, H3, and H4) for Jindo MC1R. Jindo dogs had different haplotypes corresponding to different coat colors. H1 was frequently observed in white Jindo dogs with an odds ratio of 5.03 (95% CI: 2.27-11.18, p<0.0001), whereas H2 and H4 were observed only in fawn Jindo dogs. Our findings indicate that SNP haplotype can influence coat color. Knowledge of MC1R haplotypes can help discriminate white and fawn coats in Jindo dogs. We hope this report will trigger more research into the genetics of this traditional Korean dog and will be a reference for dogs of Asian origin. Also, our results will provide a useful genetic marker for Jindo dog breeders who have selected for specific colors.

Identification of MC1R gene variants of Hanwoo and Holstein meat using PCR-RFLP (PCR-RFLP를 이용한 한우와 젖소고기의 MC1R 유전자변이 검출)

  • Koh Ba-Ra-Da;Kim Yong-Hwan;Park Seong-Do;Na Ho-Myung;Kim Jeong-Nam;Sung Chang-Min;Lee Sam-Soo
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. The primers for the amplification of bovine MC1R gene were designed based on a bovine MC1R gene sequence (GenBank accession no. Y19103). A size of 483bp (482bp for Hanwoo) was amplified by PCR, digested with Hpa II restriction enzyme and electrophoresed in $1.5\%$ agarose gel. When the amplified DNA product (483 bp) was digested with Hpa II restriction enzyme, Hanwoo meat showed a single band of 482bp, whereas two fragments of 325bp and 158bp were detected in Holstein, Angus and meat of Hanwoo / Holstein cross cow having back coat color phenotype, respectively. The results of this experiment Indicate that new designed primers of bovine MCIR gene may be useful for identification of Hanwoo meat from Holstein, Black Angus and Hanwoo / Holstein cross cow meat.

Studies on the MC1R Gene Frequencies in Landrace, Large White, Duroc and Jeju Native Black Pigs (랜드레이스, 대요크셔, 듀록 및 제주 흑돈의 Melanocortin 1 Receptor(MC1R) 유전자의 유전자형 분석)

  • Cho, I.C.;Lee, J.G.;Jung, J.G.;Yang, B.S.;Kang, S.Y.;Kim, B.W.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.207-212
    • /
    • 2002
  • This study was conducted to investigate the genotypes and frequencies of Melanocortin 1 Receptor(MC1R) genes in pigs which plays a central role in regulation of eumelanin (black/brown) and phaeomelanin(red/yellow) pigment synthesis within the mammalian melanocytes. Four different breeds of pigs(20 Landrace, 20 Yorkshire, 20 Duroc, and 93 Jeju native black pigs) were used and PCR-RFLP analysis of MC1R gene was also carried out. Two regions of MC1R genes (428bp and 405bp) were amplified using two specific primers (MERL1-EPIG2, EPIG1-EPIG3), respectively and MC1R allele were determined using 2 restriction enzymes (BspHⅠ, AccⅡ). The results of this experiment indicated that MC1R allelic type in Landrace, Large Yorkshire and Duroc were MC1R *2 (Ep), MC1R *2 (Ep), MC1R *4 (e), respectively. However, various allelic types of MC1R genes were detected in Jeju native black pigs. MC1R allelic type of Jeju black pigs was MC1R*2 type as in Meishan and Large black breeds or MC1R*3 type as in Hampshire and Berkshire breeds and the gene frequencies of ED1 and ED2 were 0.554 and 0.446 in average.

Commercial Application of Porcine MC1R Gene Polymorphisms to Korean Pork Industry (돼지 MC1R 유전자변이의 양돈산업 적용)

  • Ha, You-Kyoung;Choi, Jung-Suk;Kim, Sang-Wook;Choi, Yang-Il;Lee, Seug-Soo;Choi, Jae-Won;Jeon, Soon-Hong;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • The pork from black-coated pigs is famous among-consumers for better eating quality. The loci affecting black coat color was identified in pig chromosome 6 in which several genetic effects on pork quality have been reported. The melanocortin 1 receptor (MC1R) gene is a major gene which plays a key role in regulation of eumelanin (black/brown) and phaeomelanin (red/yellow). In this study, the MC1R gene polymorphism was analyzed for pig breed determination and genetic association with pork quality traits. MC1R Ala243Thr variation was analyzed to determine a specific genotype for four commercial pig breeds (Landrace, Yorkshire, Berkshire and, Duroc) and a Korean native pigs (KNP). Then we developed original KNP-specific DNA markers to determine the pork from black-coated pigs using MC1R DNA sequences. The total length of the MC1R coding sequence ranged 1451bp in KNP. KNP had the 0201 allele pertaining to $E^{D1}$ but some of the KNP had the $E^P$ allele, probably reflecting the geneticintrogression of $E^P$ allele into KNP. Furthermore, a relationship between Leu102Pro single nucleotide polymorphism (SNP) genotype and pork quality phenotype were analyzed in F2 reciprocal-crossbred population between KNP and Yorkshire. Association analysis indicated that the allele of the MC1R gene has no effect on pork quality. These results suggest that black coat-color is not directly associated with preferred pork quality, but the black-coat color pig breed may have other genetic components for superior pork quality.