• 제목/요약/키워드: Melamine

검색결과 236건 처리시간 0.022초

Manufacture of Wood Veneer-Bamboo Zephyr Composite Board: II. Effect of Manufacturing Conditions on Properties of Composite Board (목재 단판-대나무 제퍼 복합보드 제조: II. 복합보드의 성능에 미치는 제조조건의 영향)

  • Roh, Jeang Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.108-117
    • /
    • 2007
  • This research was performed to investigate the feasibility of bamboo as a raw material for the manufacture of plywood. Wood veneer-bamboo zephyr composite boards (WBCB) were manufactured using keruing (Dipterocarpus sp.) veneers and hachiku bamboo (Phyllostacbys nigra var. henonis Stapf) using various adhesives, and the effect of the method and amount of resin spread on the mechanical properties of the composites were investigated. The WBCB manufactured using polymeric isocyanate (PMDI) showed the best mechanical properties, followed by phenol-formaldehyde resin (PF), phenol-melamine-formaldehyde resin, urea-melamine-formaldehyde resin, and urea-formaldehyde resin. However, considering the operation feasibility as well as mechanical properties, PF resin proved to be the appropriate adhesive for the practical purpose. As the amount of resin spread increased, the mechanical properties of 5-ply WBCB with 12 mm thicknesses manufactured using PF resin tended to increase, and more failure occurred at the interface between veneer and bamboo zephyr than at the interface among bamboo zephyrs. This result suggests that penetration of resin into bamboo zephyr could be the important factor. In this research, the appropriate amount of resin amount was $320g/m^2$. 5-ply WBCBs were manufactured using various methods of resin spread but the effect of the methods on the mechanical properties showed no little difference, which meant that the method of resin spread could be chosen considering the manufacturing conditions and operation feasibility.

Preparation of Charged Composite Particles for Electrophoretic Display (전기영동 디스플레이용 대전 복합입자의 제조)

  • Na, Hae-Jin;Baek, Jeong-Ju;Kim, Ji-Suk;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • 제33권4호
    • /
    • pp.347-352
    • /
    • 2009
  • Charged organic-inorganic composite particles were prepared for the application to electrophoretic display technology such as electronic paper. $TiO_2$ and $Co_3O_4$ particles were used for core particles and were coated with poly(methyl methacrylate) by dispersion polymerization. Composite particles were endowed with charge moiety for electrophoresis; positive charge for $TiO_2$ and negative charge for $Co_3O_4$ composite particles. Scanning electron microscopic results revealed that the charged composite particles have spherical shape. Densities of the composite particles were controlled to be that of medium of electrophoresis. Density of $TiO_2$ particle changed from 4.02 to 1.44 g/$cm^3$ after the polymer coating, and that of $Co_3O_4$ particles changed from 6.11 to 1.49 g/$cm^3$. Urea, melamine, and formaldehyde were used as wall materials for capsule, and microcapsule containing black or white particles inside were prepared by in-situ polymerization. Microcapsule showed the inspection by a video microscope demonstrated the formation of uniform transparent capsules.

Viscoelastic Properties of MF/PVAc Hybrid Resins as Adhesive for Engineered Flooring by Dynamic Mechanical Thermal Analysis

  • Kim, Sumin;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.37-45
    • /
    • 2006
  • The viscoelastic properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by dynamic mechanical thermal analysis (DMTA). Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The DMTA thermogram of MF resin showed that the storage modulus (E') increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. The storage modulus (E') of MF resin increased both as a function of increasing temperature and with increasing heating rate. From isothermal DMTA results, peak $T_{tan{\delta}}$ values, maximum value of loss modulus (E") and the rigidities (${\Delta}E$) of MF/PVAc blends at room temperature as a function of open time, peak $T_{tan{\delta}}$ and maximum loss modulus (E") values were found to increase with blend MF content. Moreover, the rigidities of the 70:30 and 50:50 MF/PVAc blends were higher than those of the other blends, especially of 100% PVAc or MF. We concluded that blends the MF/PVAc blend ratios correlate during the adhesion process.

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

A Study on the Durable Press Finish by Wet-Fixation Processes for Rayon Fabrics (I) - One Bath and Two Bath Processes - (레이온 직물의 Wet-Fixation에 의한 DP가공에 관한 연구(I) - 일욕법과 이욕법의 비교 -)

  • Hu Yoon Sook;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제13권3호
    • /
    • pp.242-251
    • /
    • 1989
  • The purpose of this study was to investigate the changes in easy-care and strength properties of the wet fixation processed viscose rayon fabrics. Rayon fabrics were treated with mixed resins of melamine formaldehyde (MF) and DMDHEU by one bath and two bath wet fixation processes. The MF/DMDHEU mixed resin concentrations were 50/100, 50/150, 100/100, 100/150 and 150/100(g/1). Magnasium chloride was used as a catalyst. Treated fabrics were evaluated by nitrogen content, DP rating, wrinkle recovery angle, breaking strength, tearing strength and abrasion resistance. The properties were compared to the fabrics treated by conventional Pad-Dry-Cure (PDC) method. Wet fixation processed fabrics showed DP ratings of higher than 3 and higher than 275 degrees of wrinkle recovery angles in all the mixed resin concentrations. Wet fixation processed fabrics showed increase in breaking strength and tearing strength but decrease in abrasion resistance. However, the decrease in abrasion resistance was much less than the conventional PDC treated fabrics. The one bath wet fixation processed fabrics showed better physical properties than the two bath processed fabrics in general. The optimum treatment condition was the mixed resin concentration of MF/DMDHEU, 100/100 g/l in one bath wet fixation process.

  • PDF

(An) experimental study on the development of lightweight concrete using the PCM (PCM 혼입 경량기포콘크리트 패널 개발을 위한 기초적 연구)

  • Lim, Myung Kwan;Enkhbold, Odontuya;Kim, Young Ho;Choi, Dong Uk
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.133-138
    • /
    • 2014
  • The present study was carried out to assess the basic material properties and thermal behavior of light-weight foamed concrete panel mixed with PCM (Phase Changing Material). To do so, this study fabricated light-weight foamed concrete (1.0kg/m3) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical and thermal properties. The results confirmed strength reinforcement effect by proper replacement ratio of fly-ash, which is an industrial by-product, and PCM. In addition, it found out that PCM-mixed light-weight foamed concrete had time delay and temperature reduction effect within the range of PCM phase transition according to the rise of outdoor temperature. It was also observed that the insulation performance of PCM-mixed light-weight foamed concrete was more dependent upon thickness than PCM replacement ratio.

Corrosion Resistance of SPCC, SPFC590, SPFC780 Steel by Organic/Inorganic Hybrid Solution (Case of different SiO2 polysilicate under a constant melamin) (유/무기하이브리드 용액에 의한 SPCC, SPFC590, SPFC780 강판의 내식성 (일정한 멜라민에서 SiO2 polysilicate 양이 다른 경우))

  • Nam, Ki-Woo;Jeong, Hee-Rok;Lee, Kwang-Ho
    • Journal of Power System Engineering
    • /
    • 제21권2호
    • /
    • pp.5-13
    • /
    • 2017
  • This study has developed an organic/inorganic hybrid solution according to amount of $SiO_2$ polysilicate, and the amount of melamine is constant. The three types of cold rolled steel were evaluated a corrosion resistance properties by using these solutions. $US_3M_3$ and $US_{11}M_3$ solutions were generate a lot of corrosion. $US_7M_3$ solution was excellent in corrosion resistance, regardless of the steel type. The appearance of coating by $US_3M_3$ and $US_{11}M_3$ solutions were bumpy surface, and were a lot of fine defects. $US_7M_3$ solution was made a sophisticated molecular cross-linking structure inside the coating, it was a slick surface. Other characteristics are exhibited the excellent property for all solutions.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(I) - Effects of Fiber Types, Wet Strength Agents and a Moisture-Proof Chemical on the Physical Properties of Base Papers for Corrugated Board Boxes - (농산물 저온유통용 내수 골판지 상자의 제조 (제1보) -섬유의 종류, 습윤지력증강제 및 방습제 첨가에 따른 골판지 원지의 물리적 특성 -)

  • 조중연;민춘기;신준섭
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제35권2호
    • /
    • pp.26-32
    • /
    • 2003
  • For the purpose of manufacturing water-resistant corrugated board boxes for agricultural products in the cold chain system, the effects of fiber types, wet strength agents and a moisture-proof chemical on the properties of the base papers were investigated first. PAE(polyamide amine epichlorohydrin) showed better performance than MF(melamine formalde-hyde) over broad stock pH ranges, which was prefered as wet strength agent for the paper grade. When short fibers(AOCC, KOCC) were mixed with long fiber(UKP) in certain ratios, some physical properties of the paper made with mixed fibers were similar to those of the paper made with UKP only. Paper containing AOCC showed the biggest increase in water resistance when PAE was added to the stock. Synergistic effects in moisture-proof and some mechanical properties of paper were appeared when PAR was added internally, together with the coating of a moisture proof chemical on the sheets.

Thermal Storage and Thermodynamic Characteristics of Phase Change Materials Slurries

  • Kwon, Ki-Hyun;Jeong, Jin-Woong;Kim, Jong-Hoon;Kim, Yong-Joo;Choi, Chang-Hyun
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1392-1397
    • /
    • 2009
  • This study was aimed at developing a low cost cold storage system for agricultural products. Three kinds of slurries: $K_1$, $K_2$, and $K_3$ slurries were developed using phase change materials (PCMs) such as tetradecane, octadecane, and sodium polyacrylate to maintain the desired temperature ranges. The slurries were manufactured by in-situ polymerization. Tetradecane and octadecane were capsulated in a core with melamine at the surface. The thermodynamic characteristics of the slurries were measured and analyzed. The latent heats of the $K_1$, $K_2$, and $K_3$ slurries at the melting points were 206.41, 186.88, and 147.91 kJ/kg, respectively. A transportable cold storage container was built to investigate the performance of the slurries as thermal storage media. The temperatures at the insides of the container could be maintained in the ranges of 0-5, 5-10, and $10-15^{\circ}C$ for more than 23, 27, and 60 hr with the $K_1$, $K_2$, and $K_3$ slurries, respectively.

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF