• 제목/요약/키워드: Mel-Spectrogram

검색결과 41건 처리시간 0.026초

사전 학습된 딥러닝 모델의 Mel-Spectrogram 기반 기침 탐지를 위한 Attention 기법에 따른 성능 분석 (Attention Modules for Improving Cough Detection Performance based on Mel-Spectrogram)

  • 박창준;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.43-46
    • /
    • 2023
  • 호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.

  • PDF

오디오 전처리 방법에 따른 콘벌루션 신경망의 환경음 분류 성능 비교 (Comparison of environmental sound classification performance of convolutional neural networks according to audio preprocessing methods)

  • 오원근
    • 한국음향학회지
    • /
    • 제39권3호
    • /
    • pp.143-149
    • /
    • 2020
  • 본 논문에서는 딥러닝(deep learning)을 이용하여 환경음 분류 시 전처리 단계에서 사용하는 특징 추출 방법이 콘볼루션 신경망의 분류 성능에 미치는 영향에 대해서 다루었다. 이를 위해 환경음 분류 연구에서 많이 사용되는 UrbanSound8K 데이터셋에서 멜 스펙트로그램(mel spectrogram), 로그 멜 스펙트로그램(log mel spectrogram), Mel Frequency Cepstral Coefficient(MFCC), 그리고 delta MFCC를 추출하고 각각을 3가지 분포로 스케일링하였다. 이 데이터를 이용하여 4 종의 콘볼루션 신경망과 이미지넷에서 좋은 성능을 보였던 VGG16과 MobileNetV2 신경망을 학습시킨 다음 오디오 특징과 스케일링 방법에 따른 인식률을 구하였다. 그 결과 인식률은 스케일링하지 않은 로그 멜 스펙트럼을 사용했을 때 가장 우수한 것으로 나타났다. 도출된 결과를 모든 오디오 인식 문제로 일반화하기는 힘들지만, Urbansound8K의 환경음이 포함된 오디오를 분류할 때는 유용하게 적용될 수 있을 것이다.

산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술 (Environmental Sound Classification for Selective Noise Cancellation in Industrial Sites)

  • 최현국;김상민;박호종
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.845-853
    • /
    • 2020
  • 본 논문에서는 산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술을 제안한다. 산업현장에서의 소음은 작업자의 청력 손실의 주요 원인이 되며, 소음 문제를 해결하기 위한 소음 제거 기술이 널리 연구되고 있다. 그러나 기존 소음 제거 기술은 모든 소리를 구분 없이 차단하는 문제를 가지며, 모든 소음에 공통된 제거 방법을 적용하여 각 소음에 최적화된 소음 제거 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 사운드 종류에 따라 선택적 동작을 하는 소음 제거가 필요하고, 본 논문에서는 이를 위해 딥 러닝 기반의 환경 사운드 분류 기술을 제안한다. 제안 방법은 기존 오디오 특성인 멜-스펙트로그램의 한계를 극복하기 위해 새로운 특성으로서 멜-스펙트로그램 기반의 시간 변화 특성과 통계적 주파수 특성을 사용하며, 합성곱 신경망을 이용하여 특성을 모델링 한다. 제안하는 분류기를 사용하여 3가지 소음과 2가지 비소음으로 구성된 총 5가지 클래스로 사운드를 분류하였고, 제안하는 오디오 특성을 사용하여 기존 멜-스펙트로그램 특성을 사용할 때에 비하여 분류 정확도가 6.6% 포인트 향상되는 것을 확인하였다.

텍스트와 음성의 앙상블을 통한 다중 감정인식 모델 (Multi-Emotion Recognition Model with Text and Speech Ensemble)

  • 이명호;임명진;신주현
    • 스마트미디어저널
    • /
    • 제11권8호
    • /
    • pp.65-72
    • /
    • 2022
  • COVID-19로 인해 대면으로 이루어지던 상담 방식이 비대면으로 진행되면서 비대면 상담의 중요성이 높아지고 있다. 비대면 상담은 온라인으로 언제 어디서든 상담할 수 있고, COVID-19에 안전하다는 장점이 있다. 그러나 비언어적 표현의 소통이 어려워 내담자의 마음을 이해하기 어렵다. 이에 비대면 상담 시 내담자의 마음을 잘 알기 위해서는 텍스트와 음성을 정확하게 분석하여 감정을 인식하는 것이 중요하다. 따라서 본 논문에서는 텍스트 데이터는 자음을 분리한 후 FastText를 사용하여 벡터화하고, 음성 데이터는 Log Mel Spectrogram과 MFCC를 사용하여 각각 특징을 추출하여 벡터화한다. 벡터화된 데이터를 LSTM 모델을 활용하여 5가지 감정을 인식하는 다중 감정인식 모델을 제안한다. 다중 감정인식은 RMSE을 활용하여 계산한다. 실험 결과 텍스트와 음성 데이터를 각각 사용한 모델보다 제안한 모델의 RMSE가 0.2174로 가장 낮은 오차를 확인하였다.

환경 소음 제거를 통한 범용적인 드론 음향 탐지 구현 (A General Acoustic Drone Detection Using Noise Reduction Preprocessing)

  • 강해영;이경호
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.881-890
    • /
    • 2022
  • 다양한 장소에서 드론이 활발하게 이용되면서 비행금지구역 내 불법 침입, 정보 유출, 항공기 충돌 등의 위험이 증가하고 있다. 이러한 위험을 줄이기 위해 비행금지구역으로 침입하는 드론을 탐지할 수 있는 시스템 구축이 필요하다. 기존의 드론 음향 탐지 연구는 탐지 모델에 환경 소음에 노출된 드론 음향을 그대로 학습시켰기 때문에 환경 소음에 독립적인 성능을 얻지 못했다. 이에 본 논문에서는 다양한 공간에서 환경 소음에 노출된 드론 음향을 명확하게 탐지하기 위해 주변 환경 소음을 별도로 수집하고, 드론 음향 신호에서 환경 소음을 제거하여 시끄러운 환경 속에서도 견고한 성능을 나타내는 범용적인 드론 탐지 시스템을 제안한다. 제안하는 시스템은 수집한 드론 음향 신호에서 환경 소음을 제거한 후 Mel Spectrogram 특성추출과 CNN 딥러닝을 이용하여 드론 존재 여부를 예측하였다. 실험 결과, 환경 소음으로 인해 감소했던 드론 탐지 성능을 7% 이상 향상시킴을 확인하였다.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

음질 및 속도 향상을 위한 선형 스펙트로그램 활용 Text-to-speech (Text-to-speech with linear spectrogram prediction for quality and speed improvement)

  • 윤혜빈
    • 말소리와 음성과학
    • /
    • 제13권3호
    • /
    • pp.71-78
    • /
    • 2021
  • 인공신경망에 기반한 대부분의 음성 합성 모델은 고음질의 자연스러운 발화를 생성하기 위해 보코더 모델을 사용한다. 보코더 모델은 멜 스펙트로그램 예측 모델과 결합하여 멜 스펙트로그램을 음성으로 변환한다. 그러나 보코더 모델을 사용할 경우에는 많은 양의 컴퓨터 메모리와 훈련 시간이 필요하며, GPU가 제공되지 않는 실제 서비스 환경에서 음성 합성이 오래 걸린다는 단점이 있다. 기존의 선형 스펙트로그램 예측 모델에서는 보코더 모델을 사용하지 않으므로 이 문제가 발생하지 않지만, 대신에 고품질의 음성을 생성하지 못한다. 본 논문은 뉴럴넷 기반 보코더를 사용하지 않으면서도 양질의 음성을 생성하는 Tacotron 2 & Transformer 기반의 선형 스펙트로그램 예측 모델을 제시한다. 본 모델의 성능과 속도 측정 실험을 진행한 결과, 보코더 기반 모델에 비해 성능과 속도 면에서 조금 더 우세한 점을 보였으며, 따라서 고품질의 음성을 빠른 속도로 생성하는 음성 합성 모델 연구의 발판 역할을 할 것으로 기대한다.

노이즈 추가와 디노이징 처리에 따른 회전 기계설비의 결함 분류 모델 성능 변화 (Performance change of defect classification model of rotating machinery according to noise addition and denoising process)

  • 이세훈;김성수;조비건
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.1-2
    • /
    • 2023
  • 본 연구는 환경 요인이 통제되어 있는 실험실 데이터에 산업 현장에서 발생하는 유사 잡음을 노이즈로 추가하였을 때, SNR비에 따른 노이즈별 STFT Log Spectrogram, Mel-Spectrogram, CWT Spectrogram 총 3가지의 이미지를 생성하고, 각 이미지를 입력으로 한 CNN 결함 분류 모델의 성능 결과를 확인하였다. 원본 데이터의 영향력이 큰 0db 이상의 SNR비로 합성할 경우 원본 데이터와 분류 결과상 큰 차이가 존재하지 않았으며, 노이즈 데이터의 영향이 큰 0db 이하의 SNR비로 합성할 경우, -20db의 STFT 이미지 기준 약 26%의 성능 저하가 발생하였다. 또한, Wiener Filtering을 통한 디노이징 처리 이후, 노이즈를 효과적으로 제거하여 분류 성능의 결과가 높아지는 점을 확인하였다.

  • PDF

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

딥러닝 기반 한국어 실시간 TTS 기술 비교 (Comparison of Korean Real-time Text-to-Speech Technology Based on Deep Learning)

  • 권철홍
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.640-645
    • /
    • 2021
  • 딥러닝 기반 종단간 TTS 시스템은 텍스트에서 스펙트로그램을 생성하는 Text2Mel 과정과 스펙트로그램에서 음성신호를 합성하는 보코더 등 두 가지 과정으로 구성되어 있다. 최근 TTS 시스템에 딥러닝 기술을 적용함에 따라 합성음의 명료도와 자연성이 사람의 발성과 유사할 정도로 향상되고 있다. 그러나 기존의 방식과 비교하여 음성을 합성하는 추론 속도가 매우 느리다는 단점을 갖고 있다. 최근 제안되고 있는 비-자기회귀 방식은 이전에 생성된 샘플에 의존하지 않고 병렬로 음성 샘플을 생성할 수 있어 음성 합성 처리 속도를 개선할 수 있다. 본 논문에서는 비-자기회귀 방식을 적용한 Text2Mel 기술인 FastSpeech, FastSpeech 2, FastPitch와, 보코더 기술인 Parallel WaveGAN, Multi-band MelGAN, WaveGlow를 소개하고, 이를 구현하여 실시간 처리 여부를 검증한다. 실험 결과 구한 RTF로 부터 제시된 방식 모두 실시간 처리가 충분히 가능함을 알 수 있다. 그리고 WaveGlow를 제외하고 학습 모델 크기가 수십에서 수백 MB 정도로, 메모리가 제한되어 있는 임베디드 환경에 적용 가능함을 알 수 있다.