Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.1
/
pp.333-342
/
2012
This paper presents a vowel onset point (VOP) detection method based on the human auditory system. This method maps the "perceptual" frequency scale, i.e. Mel scale onto a linear acoustic frequency, and then establishes a series of Triangular Mel-weighted Filter Bank simulate the function of band pass filtering in human ear. This nonlinear critical-band filter bank helps greatly reduce the data dimensionality, and eliminate the effect of harmonic waves to make the formants more prominent in the nonlinear spaced Mel spectrum. The sum of mel spectrum peaks energy is extracted as feature for each frame, and the instinct at which the energy amplitude starts rising sharply is detected as VOP, by convolving with Gabor window. For the single-word database which contains 12 vowels articulated with different kinds of consonants, the experimental results showed a good average detection rate of 72.73%, higher than other vowel detection methods based on short-time energy and zero-crossing rate.
Journal of Korea Society of Industrial Information Systems
/
v.6
no.4
/
pp.81-88
/
2001
In this paper, a Korean digit recognition system based on a multilayer Perceptron is implemented. We also investigate the performance of widely used speech features, such as the Mel-scale filterbank, MFCC, LPCC, and PLP coefficients, by applying them as input of the proposed recognition system. In order to build a robust speech system, the experiments for demonstrating its recognition performance for the clean data as well as corrupt data are carried out. In experiments of recognizing 20 Korean digit, we found that the Mel-scale filterbank coefficients performs best in terms of recognition accuracy for the speech dependent and speech independent database even though noise is considerably added.
In an effort to improve the performance of mel frequency cepstral coefficients (MFCC), we investigate the effects of varying the parameters for the filter banks and their associated windows on speech recognition rates. Specifically, the mel and bark scales are combined with various types of filter bank windows. Comparison and evaluation of the suggested methods are performed by two independent ways of speech recognition and the Fisher discriminant objective function. It is shown that the Hanning window based on the bark scale yields 28.1% relative performance improvements over the triangular window with the mel scale in speech recognition error rate. Further work on incorporating PCA and/or LDA would be desirable as a postprocessor to MFCC extraction.
IEMEK Journal of Embedded Systems and Applications
/
v.15
no.5
/
pp.227-234
/
2020
In this paper, we propose wav-U-Net to improve speech enhancement in heavy noisy environments, and it has implemented three principal techniques. First, as input data, we use 128 modified Mel-scale filter banks which can reduce computational burden instead of 512 frequency bins. Mel-scale aims to mimic the non-linear human ear perception of sound by being more discriminative at lower frequencies and less discriminative at higher frequencies. Therefore, Mel-scale is the suitable feature considering both performance and computing power because our proposed network focuses on speech signals. Second, we add a simple ResNet as pre-processing that helps our proposed network make estimated speech signals clear and suppress high-frequency noises. Finally, the proposed U-Net model shows significant performance regardless of the kinds of noise. Especially, despite using a single channel, we confirmed that it can well deal with non-stationary noises whose frequency properties are dynamically changed, and it is possible to estimate speech signals from noisy speech signals even in extremely noisy environments where noises are much lauder than speech (less than SNR 0dB). The performance on our proposed wav-U-Net was improved by about 200% on SDR and 460% on NSDR compared to the conventional Jansson's wav-U-Net. Also, it was confirmed that the processing time of out wav-U-Net with 128 modified Mel-scale filter banks was about 2.7 times faster than the common wav-U-Net with 512 frequency bins as input values.
This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.
This paper presents the effect of the feature extraction methods used in the audio preprocessing on the classification performance of the Convolutional Neural Networks (CNN). We extract mel spectrogram, log mel spectrogram, Mel Frequency Cepstral Coefficient (MFCC), and delta MFCC from the UrbanSound8K dataset, which is widely used in environmental sound classification studies. Then we scale the data to 3 distributions. Using the data, we test four CNNs, VGG16, and MobileNetV2 networks for performance assessment according to the audio features and scaling. The highest recognition rate is achieved when using the unscaled log mel spectrum as the audio features. Although this result is not appropriate for all audio recognition problems but is useful for classifying the environmental sounds included in the Urbansound8K.
A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.
Fast algorithm is proposed by using mel scale and the distribution characteristic of LSP parameters, and is to reduce the computational amount. Computational amount means the calculating times of transformation from LPC coefficients to LSP parameters. Among conventional methods, the real root method is considerably simpler than other, but neverthless, it still suffer from its indeterministic computational time. Because the root searching is processed sequentially in frequency region. In this paper, the searching interval is arranged by using mel scale but not it is uniform and searching order is arranged by the distribution characteristic of LSP parameters that is most LSP papameters are occured in specific frequency region. In experimental results, computational amount of the proposed algorithm is reduced about 48.95% in average, but the transformed LSP parameters of the proposed method were the same as those of real root method.
Journal of the Institute of Electronics Engineers of Korea TE
/
v.42
no.4
/
pp.41-46
/
2005
Acoustic problems in the environment have gained attention due to the noise and vibration contact often in industry as well as life on modem society. Noise is one of safety element in industry, this proves damaging to humans from both a physical and a psychological aspect and so drop working efficiency. Various noises are happened from machines of manufacturing process in PCB industry. This paper present a new approach for subband feedback Active Noise Control (ANC) using Mel scale for headset system in PCB industry. The proposed Mel scale subband algorithm had a performance advantage over the subband algorithm in the noise attenuation and convergence time.
Journal of the Institute of Convergence Signal Processing
/
v.9
no.2
/
pp.121-128
/
2008
Accurate voice activity detection have a great impact on performance of speech applications including speech recognition, speech coding, and speech communication. In this paper, we propose methods for voice activity detection that can adapt to various car noise situations during driving. Existing voice activity detection used various method such as time energy, frequency energy, zero crossing rate, and spectral entropy that have a weak point of rapid. decline performance in noisy environments. In this paper, the approach is based on existing spectral entropy for VAD that we propose voice activity detection method using MFB(Met-frequency filter banks) spectral entropy, gradient FFT(Fast Fourier Transform) spectral entropy. and gradient MFB spectral entropy. FFT multiplied by Mel-scale is MFB and Mel-scale is non linear scale when human sound perception reflects characteristic of speech. Proposed MFB spectral entropy method clearly improve the ability to discriminate between speech and non-speech for various in noisy car environments that achieves 93.21% accuracy as a result of experiments. Compared to the spectral entropy method, the proposed voice activity detection gives an average improvement in the correct detection rate of more than 3.2%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.