• Title/Summary/Keyword: Mega structural member

Search Result 4, Processing Time 0.017 seconds

The Effects of Differential Axial Shortening on RC High-rise Buildings with Outrigger or Mega Structure Systems (아웃리거구조시스템과 메가구조시스템 적용에 따른 철근콘크리트 초고층 건물에 대한 부등축소의 영향)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. Recently, an outrigger or a mega structure system has been adopted to control the lateral displacement. Furthermore, to resolve the problems caused by differential axial shortening in high-rise buildings, analytical prediction and correction is often studied; however, the study on the comparisons of the lateral load resisting systems to address differential axial shortening is less. Therefore, in this paper, a 60-story RC residential building using an outrigger or a mega structure system is analyzed with a construction sequence. Moreover, differential axial shortening can result in an additional member force of structural members and failure of non-structural members. These problems caused by differential axial shortening affects the behaviors and can damage the important structure member in the high-rise buildings. Hence, the effects of the systems on differential axial shortening between the vertical elements in high-rise buildings are studied.

Alternative Design of Mega Structural Members of a Super-tall Building using 800MPa Grade High-performance Steel Plate (800MPa급 고성능 강재 적용한 초고층 메가 부재 대안설계)

  • Cho, So Hoon;Kim, Do Hwan;Kim, Jin Won;Lee, Seung Eun;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2014
  • HSA800 is a new high strength steel (HSS) plate for building structures developed by POSCO and RIST in 2011. It has upper and lower bounds for yield ($F_y$) and tensile ($F_u$) strength as of 650-770MPa and 800-950MPa, respectively, with yield ratio ($F_y/F_u$) limit as of 0.85 which make steel quality more reliable and enhance the seismic resistance of structures. As made by TMCP, it has a good weldability without increasing carbon percentage. The objective of this study is to provide alternative design of mega-structural members of the Lotte World Tower (555m, 123 story), a first super-tall building in Korea, using HSS considering structural safety, constructability, and cost-effectiveness. Steel outrigger trusses, belt-trusses and steel exterior columns were selected and analyzed to evaluate the structural performance between original and alternative designs using HSS. The results show that HSS can be applied to the members which do not affect lateral stiffness of a building and, in this study, approximately 1100tons of steel were saved. It implies that HSS can save overall construction costs - manufacturing, delivery, and erection costs - by reducing mega structural member size. HSA800 was very first applied to the Lotte World Tower based on the results of this study.

The New Structural Design Process of Supertall Buildings in China

  • Lianjin, Bao;Jianxing, Chen;Peng, Qian;Yongqinag, Huang;Jun, Tong;Dasui, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • By the end of 2014, the number of completed and under-construction supertall buildings above 250 meters in China reached 90 and 129, respectively. China has become one of the centers of supertall buildings in the world. Supertall buildings in China are getting taller, more slender, and more complex. The structural design of these buildings focuses on the efficiency of lateral resisting systems and the application of energy dissipation. Furthermore, the research, design, and construction of high-performance materials, pile foundations, and mega-members have made a lot of progress. Meanwhile, more and more challenges are presented, such as the improvement of structural system efficiency, the further understanding of failure models, the definition of design criteria, the application of high-performance materials, and construction monitoring. Thus, local structural engineers are playing a more important role in the design of supertall buildings.

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.