• Title/Summary/Keyword: Meeting Summarization

Search Result 5, Processing Time 0.017 seconds

Meeting Minutes Summarization using Two-step Sentence Extraction (2단계 문장 추출 방법을 이용한 회의록 요약)

  • Lee, Jae-Kul;Park, Seong-Bae;Lee, Sang-Jo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.741-747
    • /
    • 2010
  • These days many meeting minutes of various organizations are publicly available and the interest in these documents by people is increasing. However, it is time-consuming and tedious to read and understand whole documents even if the documents can be accessed easily. In addition, what most people want from meeting minutes is to catch the main issues of the meeting and understand its contexts rather than to know whole discussions of the meetings. This paper proposes a novel method for summarizing documents considering the characteristics of the meeting minutes. It first extracts the sentences which are addressing the main issues. For each issues expressed in the extracted sentences, the sentences related with the issue are then extracted in the next step. Then, by transforming the extracted sentences into a tree-structure form, the results of the proposed method can be understood better than existing methods. In the experiments, the proposed method shows remarkable improvement in performance and this result implies that the proposed method is plausible for summarizing meeting minutes.

MAS: Real-time Meeting Scripting and Summarization Service using BART and WebRTC library (MAS: BART 와 WebRTC 라이브러리를 이용한 실시간 회의 스크립트화 및 요약 서비스)

  • Kwon, Ki-Jun;Ko, Geon-Jun;Joo, Yeong-Hwan;Chi, Jeong-hee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.619-621
    • /
    • 2022
  • COVID-19 사태의 지속화로 재택근무 및 화상 수업의 수요가 증가함에 따라, 화상 회의 서비스에 대한 수요 또한 증가하고 있다. 본 논문은 회의 내용의 텍스트화 및 요약 회의록 생성에 관한 연구를 통해 보다 효율적인 화상 회의 서비스를 제공하고자 한다. WebRTC를 기반으로 화상 회의 서비스를 제공하며, WebSpeech API 를 활용하여 회의 내용을 스크립트화 한다. 회의 스크립트는 BART를 통해 요약본으로 재생성되며, 회의 스크립트와 요약본은 언제든지 열람 및 다운로드가 가능하다. 본 논문은 회의 요약 기능을 제공하는 화상 회의 서비스 MAS (Meeting Auto Summarization)를 제안하며, MAS 의 설계 및 구현 방법을 소개한다.

Multi-Topic Meeting Summarization using Lexical Co-occurrence Frequency and Distribution (어휘의 동시 발생 빈도와 분포를 이용한 다중 주제 회의록 요약)

  • Lee, Byung-Soo;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.13-16
    • /
    • 2015
  • 본 논문에서는 어휘의 동시 발생 (co-occurrence) 빈도와 분포를 이용한 회의록 요약방법을 제안한다. 회의록은 일반 문서와 달리 문서에 여러 세부적인 주제들이 나타나며, 잘못된 형식의 문장, 불필요한 잡담들을 포함하고 있기 때문에 이러한 특징들이 문서요약 과정에서 고려되어야 한다. 기존의 일반적인 문서요약 방법은 하나의 주제를 기반으로 문서 전체에서 가장 중요한 문장으로 요약하기 때문에 다중 주제 회의록 요약에는 적합하지 않다. 제안한 방법은 먼저 어휘의 동시 발생 (co-occurrence) 빈도를 이용하여 회의록 분할 (segmentation) 과정을 수행한다. 다음으로 주제의 구분에 따라 분할된 각 영역 (block)의 중요 단어 집합 생성, 중요 문장 추출 과정을 통해 회의록의 중요 문장들을 선별한다. 마지막으로 추출된 중요 문장들의 위치, 종속 관계를 고려하여 최종적으로 회의록을 요약한다. AMI meeting corpus를 대상으로 실험한 결과, 제안한 방법이 baseline 요약 방법들보다 요약 비율에 따른 평가 및 요약문의 세부 주제별 평가에서 우수한 요약 성능을 보임을 확인하였다.

  • PDF

Corpus Construction of National Assembly Minutes Summarization for Korean Abstractive Meeting Minutes Summarization (한국어 회의록 생성 요약을 위한 국회 회의록 요약 말뭉치 구축 연구)

  • Younggyun Hahm;Yejee Kang;Seoyoon Park;Yongbin Jeong;Hyunbin Seo;Yiseul Lee;Hyejin Seo;Saetbyol Seo;Hansam Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.192-197
    • /
    • 2022
  • 요약 연구의 주류는 아직 문서를 대상으로 하지만, 최근에는 회의 요약 연구에 대한 관심이 크게 높아지고 있다. 본 연구는 국립국어원 국어 빅데이터 구축 사업의 일환으로 국내에서 아직 연구되지 않은 국회 회의록 생성 요약에 대해 연구를 진행하였으며, 국회 회의록에 대한 생성 요약 데이터세트를 구축하였다. 또한 생성 요약 모델을 통해 구축된 데이터세트에 대한 정량 및 정성적 평가를 진행함으로써 국회 회의록 요약 데이터세트에 대한 평가 및 향후 생성 요약과 회의록 요약의 연구 방향을 모색하였다.

  • PDF

A Long Meeting Summarization using ROUGE-based Importance (ROUGE기반 중요도를 반영한 긴 회의록 요약)

  • Jinhyeong Lim;Hyun-Je Song
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.41-46
    • /
    • 2022
  • 본 논문에서는 중요도를 반영한 긴 회의록 요약 모델을 제안한다. 제안한 모델은 먼저 회의록을 일정 크기로 구분한 후 구분된 텍스트에 대해 중간 요약문을 생성하고 각 요약문의 중요도를 계산한다. 다음으로 생성된 중간 요약문과 중요도를 함께 사용하여 최종 요약문을 생성한다. 제안 방법은 최종 요약문을 생성할 때 중간 요약문을 다르게 반영하므로 중요한 중간 요약문에서는 핵심 내용을 중점적으로 생성하도록 한다. 실험에서 제안한 요약 모델은 BART기반 요약 모델과, 중요도를 고려하지 않는 요약 모델(SUMMN)보다 핵심 내용을 포함한 요약문을 생성하였고, 평가 데이터에 대해 ROUGE-1 기준 1.37, 0.29 향상된 성능을 보였다.

  • PDF