• Title/Summary/Keyword: Medium-Scale Reactor Design

Search Result 7, Processing Time 0.021 seconds

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop (초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석)

  • Yoon, Churl;Hong, Sung-Deok;Noh, Jae-Man;Kim, Yong-Wan;Chang, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.553-561
    • /
    • 2010
  • A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I) (소형 PCHE 에 대한 거시적 고온 구조 해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Sung-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1499-1506
    • /
    • 2011
  • The IHX (intermediate heat exchanger) is a key component of nuclear hydrogen systems for the production of massive amounts hydrogen. The IHX transfers the $950^{\circ}C$ heat generated by the VHTR (very high temperature reactor) to a hydrogen production plant. The Korea Atomic Energy Research Institute established a small-scale gas loop to test the performance of key VHTR components and manufactured a small-scale PCHE (printed circuit heat exchanger) prototype, which is being considered as a candidate for the IHX, for testing in the small-scale gas loop. In this study, as a part of the high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and structural analysis for the small-scale PCHE prototype under the small-scale gas loop test conditions. This analysis serves as a precedent study to scheduled PCHE performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE and then used to design the medium-scale PCHE prototype.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.