• Title/Summary/Keyword: Medicine, Chinese Traditional

Search Result 1,178, Processing Time 0.028 seconds

Mathematical expression systems of Xiangshu Zhouyi Theory in traditional times (중국 전통시기 역학의 수학적 해석체계)

  • YOON, SEOKMIN
    • The Journal of Korean Philosophical History
    • /
    • no.35
    • /
    • pp.385-413
    • /
    • 2012
  • This thesis is a study on the relation of between Xiangshu Zhouyi Theory and mathematics, Zhouyi Theory as the one of the study of Chinese classics, was formed by Zhouyi' Eight Diagrams, the theory of Yinyangwuxing and the knowledge of natural science in Han dynasty. 'Xiangshu' had been regarded as the important concept and theory in the history of Zhouyi Theory From the beginning of Han dynasty to the end of Qing dynasty. At this developing of this Periodical Change, 'Xiangshu' had been endoded in the expression system of mathematics. This thesis considers binary system and surplus nembers, multiple and progression, magic square and circular constant, a proportional expression from Zhouyi Theory point of view. Xiangshu Zhouyi theory got the answer of these questions like the origin of Zhouyi, interpreting Guayao-word and Cosmology by using those expression systems of mathematics. Besides mathematics, Xiangshu Zhouyi theory was also related to astronomy, medicine, etc. Xiangshu Zhouyi theory had kept the pace with the general development of natural science. This thesis from the premise that Xiangshu Zhouyi theory kept the pace with natural science, summing up the mathematical expression system in the history of Zhouyi theory, proves that Xiangshu Zhouyi theory had developed according as the conditions of natural science.

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

Effect of Sophora flavescens Extract on Reinforcing Skin Barrier and Alleviating Inflammation (고삼 추출물의 피부장벽 강화와 염증완화 효과)

  • Roh, Kyung-Baeg;Shin, Seoungwoo;Yoon, Sohyun;Weon, Jin Bae;Oh, Se-young;Kim, Junoh;Park, Deokhoon;Jung, Eunsun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.361-369
    • /
    • 2020
  • Atopic dermatitis (AD) is a common and multifactorial inflammatory skin disease that is characterized by skin barrier dysfunction, inflammation, and chronic pruritus. AD has a complex etiology that includes genetic, immunological, and environmental factors that cause skin barrier abnormalities and immune dysfunctions. Sophora flavescens (SF) has been used in traditional Chinese medicine, but little research has been conducted on its anti-AD efficacy. In this study, we evaluated the effect of SF extract (SFE) on improving skin barrier function and immune abnormalities, which are the main symptoms of AD. SFE has the capacity to enhance the formation of cornified envelope (CE) that plays an important role in the skin barrier function. In addition, it was confirmed that SFE increased the expression of hyaluronic acid related to skin moisture. The effect of SFE against Staphylococcus aureus (S. aureus), which increases specifically in AD lesions, confirmed that SFE inhibited the production of pro-inflammatory cytokines induced by S. aureus. Furthermore, SFE was shown to inhibit the expression of pro-inflammatory cytokines induced by substance P (SP), the cause of skin neurogenic inflammation. These results demonstrate that SFE could be one of potential candidate agent for the treatment of AD by improving the skin barrier function and immune responses.

The Clinical Characteristics of Electrolyte Disturbance in Patients with Moderate and Severe Traumatic Brain Injury Who Underwent Craniotomy and Its Influence on Prognosis

  • Geng Huan Wang;Yu Yan;He Ping Shen;Zhengmin Chu
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.3
    • /
    • pp.332-339
    • /
    • 2023
  • Objective : The present study aimed to investigate the clinical characteristics of electrolyte imbalance in patients with moderate to severe traumatic brain injury (TBI) who underwent craniotomy and its influence on prognosis. Methods : A total of 156 patients with moderate to severe TBI were prospectively collected from June 2019 to June 2021. All patients underwent craniotomy and intracranial pressure (ICP) monitoring. We aimed to explore the clinical characteristics of electrolyte disturbance and to analyze the influence of electrolyte disturbance on prognosis. Results : A total of 156 patients with moderate and severe TBI were included. There were 57 cases of hypernatremia, accounting for 36.538%, with the average level of 155.788±7.686 mmol/L, which occurred 2.2±0.3 days after injury. There were 25 cases of hyponatremia, accounting for 16.026%, with the average level of 131.204±3.708 mmol/L, which occurred 10.2±3.3 days after injury. There were three cases of hyperkalemia, accounting for 1.923%, with the average level of 7.140±1.297 mmol/L, which occurred 5.3±0.2 days after injury. There were 75 cases of hypokalemia, accounting for 48.077%, with the average level of 3.071±0.302 mmol/L, which occurred 1.8±0.6 days after injury. There were 105 cases of hypocalcemia, accounting for 67.308%, with the average level of 1.846±0.104 mmol/L, which occurred 1.6±0.2 days after injury. There were 17 cases of hypermagnesemia, accounting for 10.897%, with the average level of 1.213±0.426 mmol/L, which occurred 1.8±0.5 days after injury. There were 99 cases of hypomagnesemia, accounting for 63.462%, with the average level of 0.652±0.061 mmol/L, which occurred 1.3±0.4 days after injury. Univariate regression analysis revealed that age, Glasgow coma scale (GCS) score at admission, pupil changes, ICP, hypernatremia, hypocalcemia, hypernatremia combined with hypocalcemia, epilepsy, cerebral infarction, severe hypoproteinemia were statistically abnormal (p<0.05), while gender, hyponatremia, potassium, magnesium, intracranial infection, pneumonia, allogeneic blood transfusion, hypertension, diabetes, abnormal liver function, and abnormal renal function were not statistically significant (p>0.05). After adjusting gender, age, GCS, pupil changes, ICP, epilepsy, cerebral infarction, severe hypoproteinemia, multivariate logistic regression analysis revealed that hypernatremia or hypocalcemia was not statistically significant, while hypernatremia combined with hypocalcemia was statistically significant (p<0.05). Conclusion : The incidence of hypocalcemia was the highest, followed by hypomagnesemia, hypokalemia, hypernatremia, hyponatremia and hypermagnesemia. Hypocalcemia, hypomagnesemia, and hypokalemia generally occurred in the early post-TBI period, hypernatremia occurred in the peak period of ICP, and hyponatremia mostly occurred in the late period after decreased ICP. Hypernatremia combined with hypocalcemia was associated with prognosis.

Phenol, Flavonoid, and Total Polysaccharide Content according to Temperature Treatment of Raw, Red, and Soft Red Ginseng (인삼, 홍삼, 연질 홍삼의 온도처리에 따른 페놀, 플라보노이드 및 총 다당류 함량)

  • Man Kyu Huh
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.549-554
    • /
    • 2023
  • Korean ginseng has been used for centuries in traditional Chinese medicine as an overall wellness supplement. Red ginseng (Ginseng Radix Rubra) is produced by steaming the roots, followed by drying. Soft red ginseng is produced using a new processing technology. This study investigated whether soft red ginseng differs from raw and hard red ginseng in its physicochemical composition. Results showed that the total phenol content of raw ginseng was 2.96 mg/g at 80℃ and 3.47 mg/g at 160 ℃. Meanwhile, the total phenols of hard and soft red ginseng were 4.12 mg/g and 4.18 mg/g at 160℃, respectively. The total phenol contents of raw, hard red, and soft red ginseng revealed a statistically significant difference (p>0.05). The total flavonoid contents of raw, hard red, and soft red ginseng were 2.62 mg/g, 3.97 mg/g, and 3.83 mg/g at 160℃, respectively. Among the three samples, soft red ginseng had the highest total sugar content at 160℃. The acidic polysaccharide contents of both soft and hard red ginseng were much higher than that of raw ginseng (49%-58%). Significant differences were observed among raw, hard red, and soft red ginseng (p<0.001). Soft red ginseng exhibited higher phenol content (25%), total flavonoid content (49%), and total sugar content (45%) than raw ginseng.

The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx

  • Hai-Xia Li;Yan Ma;Yu-Xiao Yan;Xin-Ke Zhai;Meng-Yu Xin;Tian Wang;Dong-Cao Xu;Yu-Tong Song;Chun-Dong Song;Cheng-Xue Pan
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.755-765
    • /
    • 2023
  • Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim;Shuya Zhang ;Ying Zhu;Ruirui Wang;Jianxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.627-637
    • /
    • 2023
  • Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

  • Park, Hyun-Kuk;Kim, Ki-Wook
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.10
    • /
    • pp.1-40
    • /
    • 2008
  • 1.The 'Kao Zheng Pai'(考證派) comes from the 'Zhe Zhong Pai(折衷派)' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金峨), Yoshida Koton(古田篁墩 $1745{\sim}1798$) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li'(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 $1739{\sim}1798$) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan(躋壽館) mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken(伊澤蘭軒) taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai(澀江抽齋), Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 $1749{\sim}1787$) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論") and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯). 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken(伊澤蘭軒) and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋詞"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue"("金匱要略"), "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Ritsi(森立之 $1807{\sim}1885$) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken(伊澤蘭軒) and later became a pupil of Shou Gu Yi Zhai(狩谷掖齋), a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"("神農本草經") and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"(枳園隨筆) that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"(說文解字) to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據), Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬, $1804{\sim}1876$) learned scriptures and ancient texts from confucian scholar Asaka Gonsai(安積艮齋), and learned medicine from his father Huai Yaun(槐園), He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju"("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi"("金匱要略疏義") and "Lao Yi Zhi Yan"(老醫巵言) but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 $912{\sim}955$) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 $1755{\sim}1810$) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi"("傷寒論輯義") and "Jin Qui Yao Lue Ji Yi"("金匱要略輯義") are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng"("醫勝") is a collection of essays on research. Also there are the "Su Wen Shi"(素問識), "Ling Shu Shi"("靈樞識"), and the "Guan Ju Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 $1789{\sim}1827$), and his works include works of research such as "Nan Jing Shu Jeng"(難經疏證), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"(疾雅), "Ming Yi Gong An"(名醫公案), and "Yi Ji Kao"(醫籍考). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 $1789{\sim}1827$), Yuan Jian(元堅 $1795{\sim}1857$) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(禦匙). He left about 15 texts, including "Su Wen Shao Shi"("素問紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"("傷寒廣要"), and "Zhen Fu Yao Jue"("診腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(矢數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', the founding of Ji Shou Guan(躋壽館) and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

  • PDF

A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

  • Park, Hyun-Kuk;Kim, Ki-Wook
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.211-250
    • /
    • 2007
  • 1. The 'Kao Zheng Pai(考證派) comes from the 'Zhe Zhong Pai' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金娥), Yoshida Koton(吉田篁墩) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li '(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 1739${\sim}$1798) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai, Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 1749${\sim}$1787) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論) and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯) 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai 's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋司"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue", "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Rits(森立之 1807${\sim}$ 1885) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken and later became a pupil of Shou Gu Yi Zhai, a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("神農本草經"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"(神農本草經) and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"("枳園隨筆") that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"("說文解字") to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據). Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬 1804${\sim}$1876) learned scriptures and ancient texts from confucian scholar Asaka Gonsai, and learned medicine from his father Huai Yaun(槐園). He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi" and "Lao Yi Zhi Yan" but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 912-955) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 1755-1810) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi" and "Jin Qui Yao Lue Ji Yi" are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng" is a collection of essays on research. Also there are the "Su Wen Shi"("素問識"), "Ling Shu Shi"("靈樞識"), and the "Guan lu Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 1789-1827), and his works include works of research such as "Nan Jing Shu Jeng"("難經疏證"), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"("疾雅"), "Ming Yi Gong An"("名醫公案"), and "Yi Ji Kao"("醫籍考"). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 1789-1827), Yuan Jian(元堅 1795-1857) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(樂匙). He left about 15 texts, including "Su Wen Shao Shi"("素間紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"(傷寒廣要), and "Zhen Fu Yao Jue"("該腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(失數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', 'the founding of Ji Shou Guan and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai ' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

  • PDF

DEU-7 Derived from Ulmus macrocarpa Improved Immune Functions in Cyclophosphamide-treated Mice (면역억제 마우스 모델에서 왕느릅나무 유래 DEU-7의 면역기능 증강)

  • Kang, Kyung-Hwa;Go, Ji Su;Lee, Inhwan;Lee, Sang Ho;Lee, Sung Do;Kim, Deok Won;Lee, Jong-Hwan;Hwang, HyeJin;Hyun, Sook Kyung;KIM, Byoung Woo;Kim, Chul Min;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1156-1163
    • /
    • 2015
  • The present study investigated the immunomodulatory properties of four different medicinal plants in a cyclophosphamide-treated Balb/c mouse model. One of the four plants, Ulmus macrocarpa, showed partial resistance against immune suppression induced by cyclophosphamide. The bark of U. macrocarpa, commonly known as the Chinese elm, has been used as a pharmaceutical material in Korean traditional medicine to treat bacterial inflammation and induce wound healing. In this study, water extract of U. macrocarpa, named DEU-7, was used for its immunomodulating functional activity. DEU-7 increased the weight of the spleen and the number of splenocytes but did not significantly affect the liver, kidney, and thymus in vivo. A splenocyte viability assay confirmed that DEU-7 influenced ex vivo splenocyte survival. DEU-7 also increased the levels of cytokines, such as IL-2 and IL-4, and immunoglobulins, such as IgM, IgG, and IgA. These results indicated that DEU-7 is involved in the activation of T and B lymphocytes. In addition, DEU-7 was able to maintain the production of cytokines, such as TNF-α, IL-12, and IFN-γ, in the condition of cyclophosphamide-induced immune suppression, suggesting that DEU-7 activated innate immune cells, even under immune suppression. We concluded that DEU-7 aids immunological homeostasis, thereby preventing immune suppression, and aids both innate and adaptive immune response by maintaining the levels of various cytokines and immunoglobulins. Consequently, it is worth investigating the potential of DEU-7 as a supplemental source for immune-enhancing agents.