DOI QR코드

DOI QR Code

The Clinical Characteristics of Electrolyte Disturbance in Patients with Moderate and Severe Traumatic Brain Injury Who Underwent Craniotomy and Its Influence on Prognosis

  • Geng Huan Wang (Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University) ;
  • Yu Yan (Zhejiang University of Traditional Chinese Medicine) ;
  • He Ping Shen (Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University) ;
  • Zhengmin Chu (Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University)
  • 투고 : 2022.04.11
  • 심사 : 2022.10.11
  • 발행 : 2023.05.01

초록

Objective : The present study aimed to investigate the clinical characteristics of electrolyte imbalance in patients with moderate to severe traumatic brain injury (TBI) who underwent craniotomy and its influence on prognosis. Methods : A total of 156 patients with moderate to severe TBI were prospectively collected from June 2019 to June 2021. All patients underwent craniotomy and intracranial pressure (ICP) monitoring. We aimed to explore the clinical characteristics of electrolyte disturbance and to analyze the influence of electrolyte disturbance on prognosis. Results : A total of 156 patients with moderate and severe TBI were included. There were 57 cases of hypernatremia, accounting for 36.538%, with the average level of 155.788±7.686 mmol/L, which occurred 2.2±0.3 days after injury. There were 25 cases of hyponatremia, accounting for 16.026%, with the average level of 131.204±3.708 mmol/L, which occurred 10.2±3.3 days after injury. There were three cases of hyperkalemia, accounting for 1.923%, with the average level of 7.140±1.297 mmol/L, which occurred 5.3±0.2 days after injury. There were 75 cases of hypokalemia, accounting for 48.077%, with the average level of 3.071±0.302 mmol/L, which occurred 1.8±0.6 days after injury. There were 105 cases of hypocalcemia, accounting for 67.308%, with the average level of 1.846±0.104 mmol/L, which occurred 1.6±0.2 days after injury. There were 17 cases of hypermagnesemia, accounting for 10.897%, with the average level of 1.213±0.426 mmol/L, which occurred 1.8±0.5 days after injury. There were 99 cases of hypomagnesemia, accounting for 63.462%, with the average level of 0.652±0.061 mmol/L, which occurred 1.3±0.4 days after injury. Univariate regression analysis revealed that age, Glasgow coma scale (GCS) score at admission, pupil changes, ICP, hypernatremia, hypocalcemia, hypernatremia combined with hypocalcemia, epilepsy, cerebral infarction, severe hypoproteinemia were statistically abnormal (p<0.05), while gender, hyponatremia, potassium, magnesium, intracranial infection, pneumonia, allogeneic blood transfusion, hypertension, diabetes, abnormal liver function, and abnormal renal function were not statistically significant (p>0.05). After adjusting gender, age, GCS, pupil changes, ICP, epilepsy, cerebral infarction, severe hypoproteinemia, multivariate logistic regression analysis revealed that hypernatremia or hypocalcemia was not statistically significant, while hypernatremia combined with hypocalcemia was statistically significant (p<0.05). Conclusion : The incidence of hypocalcemia was the highest, followed by hypomagnesemia, hypokalemia, hypernatremia, hyponatremia and hypermagnesemia. Hypocalcemia, hypomagnesemia, and hypokalemia generally occurred in the early post-TBI period, hypernatremia occurred in the peak period of ICP, and hyponatremia mostly occurred in the late period after decreased ICP. Hypernatremia combined with hypocalcemia was associated with prognosis.

키워드

과제정보

This study was supported by Zhejiang provincial medical science and technology program (2022KY1257). The authors would like to thank Jiaxing Key Scientific and Technological Innovation Team--Targeted Drug Research and Tumor Nanotargeting and TCM Technology Innovation Team.

참고문헌

  1. Askar A, Tarif N : Cerebral salt wasting in a patient with head trauma: management with saline hydration and fludrocortisone. Saudi J Kidney Dis Transpl 18 : 95-99, 2007
  2. Balbino M, Capone Neto A, Prist R, Ferreira AT, Poli-de-Figueiredo LF : Fluid resuscitation with isotonic or hypertonic saline solution avoids intraneural calcium influx after traumatic brain injury associated with hemorrhagic shock. J Trauma 68 : 859-864, 2010 https://doi.org/10.1097/TA.0b013e3181af69d3
  3. Beal AL, Scheltema KE, Beilman GJ, Deuser WE : Hypokalemia following trauma. Shock 18 : 107-110, 2002 https://doi.org/10.1097/00024382-200208000-00002
  4. Berkenbosch JW, Lentz CW, Jimenez DF, Tobias JD : Cerebral salt wasting syndrome following brain injury in three pediatric patients: suggestions for rapid diagnosis and therapy. Pediatr Neurosurg 36 : 75-79, 2002 https://doi.org/10.1159/000048356
  5. Bilotta F, Giovannini F, Aghilone F, Stazi E, Titi L, Zeppa IO, et al. : Potassium sparing diuretics as adjunct to mannitol therapy in neurocritical care patients with cerebral edema: effects on potassium homeostasis and cardiac arrhythmias. Neurocrit Care 16 : 280-285, 2012 https://doi.org/10.1007/s12028-011-9652-2
  6. Brimioulle S, Orellana-Jimenez C, Aminian A, Vincent JL : Hyponatremia in neurological patients: cerebral salt wasting versus inappropriate antidiuretic hormone secretion. Intensive Care Med 34 : 125-131, 2008 https://doi.org/10.1007/s00134-007-0905-7
  7. Brown MJ, Brown DC, Murphy MB : Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med 309 : 1414-1419, 1983 https://doi.org/10.1056/NEJM198312083092303
  8. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. : Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80 : 6-15, 2017 https://doi.org/10.1227/NEU.0000000000001432
  9. De Petris L, Luchetti A, Emma F : Cell volume regulation and transport mechanisms across the blood-brain barrier: implications for the management of hypernatraemic states. Eur J Pediatr 160 : 71-77, 2001 https://doi.org/10.1007/s004310000631
  10. Deveduthras N, Balakrishna Y, Muckart D, Harrichandparsad R, Hardcastle T : The prevalence of sodium abnormalities in moderate to severe traumatic brain injury patients in a level 1 trauma unit in Durban. S Afr J Surg 57 : 62, 2019
  11. Epstein FH, Rosa RM : Adrenergic control of serum potassium. N Engl J Med 309 : 1450-1451, 1983 https://doi.org/10.1056/NEJM198312083092308
  12. Froelich M, Ni Q, Wess C, Ougorets I, Hartl R : Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med 37 : 1433-1441, 2009 https://doi.org/10.1097/CCM.0b013e31819c1933
  13. Gerber JG, Branch RA, Nies AS, Hollifield JW, Gerkens JF : Influence of hypertonic saline on canine renal blood flow and renin release. Am J Physiol 237 : F441-F446, 1979 https://doi.org/10.1152/ajprenal.1979.237.6.F441
  14. Hoffman H, Jalal MS, Chin LS : Effect of hypernatremia on outcomes after severe traumatic brain injury: a nationwide inpatient sample analysis. World Neurosurg 118 : e880-e886, 2018 https://doi.org/10.1016/j.wneu.2018.07.089
  15. Kafadar AM, Sanus GZ, Is M, Coskun A, Tanriverdi T, Hanimoglu H, et al. : Prolonged elevation of magnesium in the cerebrospinal fluid of patients with severe head injury. Neurol Res 29 : 824-829, 2007 https://doi.org/10.1179/016164107X181879
  16. Kozeny GA, Murdock DK, Euler DE, Hano JE, Scanlon PJ, Bansal VK, et al. : In vivo effects of acute changes in osmolality and sodium concentration on myocardial contractility. Am Heart J 109 : 290-296, 1985 https://doi.org/10.1016/0002-8703(85)90596-4
  17. Kugler JP, Hustead T : Hyponatremia and hypernatremia in the elderly. Am Fam Physician 61 : 3623-3630, 2000
  18. Kung AW, Pun KK, Lam KS, Yeung RT : Rhabdomyolysis associated with cranial diabetes insipidus. Postgrad Med J 67 : 912-913, 1991 https://doi.org/10.1136/pgmj.67.792.912
  19. Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, et al. : Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med 23 : 98, 2015
  20. Li M, Hu YH, Chen G : Hypernatremia severity and the risk of death after traumatic brain injury. Injury 44 : 1213-1218, 2013 https://doi.org/10.1016/j.injury.2012.05.021
  21. Lindner G, Funk GC : Hypernatremia in critically ill patients. J Crit Care 28 : 216.e11-e20, 2013 https://doi.org/10.1016/j.jcrc.2012.10.037
  22. Lucas SM, Rothwell NJ, Gibson RM : The role of inflammation in CNS injury and disease. Br J Pharmacol 147 : S232-S240, 2006 https://doi.org/10.1038/sj.bjp.0706400
  23. Maggiore U, Picetti E, Antonucci E, Parenti E, Regolisti G, Mergoni M, et al. : The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury. Crit Care 13 : R110, 2009
  24. Manuel VR, Martin SA, Juan SR, Fernando MA, Frerk M, Thomas K, et al. : Hypocalcemia as a prognostic factor in mortality and morbidity in moderate and severe traumatic brain injury. Asian J Neurosurg 10 : 190-194, 2015 https://doi.org/10.4103/1793-5482.161171
  25. McKee JA, Brewer RP, Macy GE, Borel CO, Reynolds JD, Warner DS : Magnesium neuroprotection is limited in humans with acute brain injury. Neurocrit Care 2 : 342-351, 2005 https://doi.org/10.1385/NCC:2:3:342
  26. McKee JA, Brewer RP, Macy GE, Phillips-Bute B, Campbell KA, Borel CO, et al. : Analysis of the brain bioavailability of peripherally administered magnesium sulfate: a study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med 33 : 661-666, 2005 https://doi.org/10.1097/01.CCM.0000156293.35868.B2
  27. Muizelaar JP, Wei EP, Kontos HA, Becker DP : Cerebral blood flow is regulated by changes in blood pressure and in blood viscosity alike. Stroke 17 : 44-48, 1986 https://doi.org/10.1161/01.STR.17.1.44
  28. Murphy N, Auzinger G, Bernel W, Wendon J : The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology 39 : 464-470, 2004 https://doi.org/10.1002/hep.20056
  29. Nayak R, Attry S, Ghosh SN : Serum magnesium as a marker of neurological outcome in severe traumatic brain injury patients. Asian J Neurosurg 13 : 685-688, 2018 https://doi.org/10.4103/ajns.AJNS_232_16
  30. Paiva WS, Bezerra DA, Amorim RL, Figueiredo EG, Tavares WM, De Andrade AF, et al. : Serum sodium disorders in patients with traumatic brain injury. Ther Clin Risk Manag 7 : 345-349, 2011
  31. Pin-On P, Saringkarinkul A, Punjasawadwong Y, Kacha S, Wilairat D : Serum electrolyte imbalance and prognostic factors of postoperative death in adult traumatic brain injury patients: a prospective cohort study. Medicine (Baltimore) 97 : e13081, 2018
  32. Plochl E, Thalhammer O, Weissenbacher G : Brain damage of acute course in an infant with hyperphenylalaninemia and hypercalcemia. Helv Paediatr Acta 23 : 292-304, 1968
  33. Pomeranz S, Constantini S, Rappaport ZH : Hypokalaemia in severe head trauma. Acta Neurochir (Wien) 97 : 62-66, 1989 https://doi.org/10.1007/BF01577741
  34. Rafiq MF, Ahmed N, Khan AA : Serum electrolyte derangements in patients with traumatic brain injury. J Ayub Med Coll Abbottabad 25 : 162-164, 2013
  35. Rajagopal R, Swaminathan G, Nair S, Joseph M : Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg 108 : 529-533, 2017 https://doi.org/10.1016/j.wneu.2017.09.013
  36. Rhoney DH, Parker D Jr : Considerations in fluids and electrolytes after traumatic brain injury. Nutr Clin Pract 21 : 462-478, 2006 https://doi.org/10.1177/0115426506021005462
  37. Sajadieh A, Binici Z, Mouridsen MR, Nielsen OW, Hansen JF, Haugaard SB : Mild hyponatremia carries a poor prognosis in community subjects. Am J Med 122 : 679-686, 2009 https://doi.org/10.1016/j.amjmed.2008.11.033
  38. Sakamoto T, Takasu A, Saitoh D, Kaneko N, Yanagawa Y, Okada Y : Ionized magnesium in the cerebrospinal fluid of patients with head injuries. J Trauma 58 : 1103-1109, 2005 https://doi.org/10.1097/01.TA.0000169950.51735.C4
  39. Simsek E, Dilli D, Yasitli U, Ozlem N, Bostanci I, Dallar Y : Cerebral salt wasting in a child with cervicothoracic hematoma. J Pediatr Endocrinol Metab 21 : 695-700, 2008 https://doi.org/10.1515/JPEM.2008.21.7.695
  40. Spahn DR : Hypocalcemia in trauma: frequent but frequently undetected and underestimated. Crit Care Med 33 : 2124-2125, 2005 https://doi.org/10.1097/01.CCM.0000174479.32054.3D
  41. Stippler M, Fischer MR, Puccio AM, Wisniewski SR, Carson-Walter EB, Dixon CE, et al. : Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma 24 : 1347-1354, 2007 https://doi.org/10.1089/neu.2007.0277
  42. Van Beek JG, Mushkudiani NA, Steyerberg EW, Butcher I, McHugh GS, Lu J, et al. : Prognostic value of admission laboratory parameters in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24 : 315-328, 2007 https://doi.org/10.1089/neu.2006.0034
  43. Vedantam A, Robertson CS, Gopinath SP : Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus 43 : E2, 2017
  44. Vinas-Rios JM, Sanchez-Aguilar M, Sanchez-Rodriguez JJ, Gonzalez-Aguirre D, Heinen C, Meyer F, et al. : Hypocalcaemia as a prognostic factor of early mortality in moderate and severe traumatic brain injury. Neurol Res 36 : 102-106, 2014 https://doi.org/10.1179/1743132813Y.0000000272
  45. Vivien B, Langeron O, Morell E, Devilliers C, Carli PA, Coriat P, et al. : Early hypocalcemia in severe trauma. Crit Care Med 33 : 1946-1952, 2005 https://doi.org/10.1097/01.CCM.0000171840.01892.36
  46. Wilcox CS : Regulation of renal blood flow by plasma chloride. J Clin Invest 71 : 726-735, 1983 https://doi.org/10.1172/JCI110820
  47. Wu X, Lu X, Lu X, Yu J, Sun Y, Du Z, et al. : Prevalence of severe hypokalaemia in patients with traumatic brain injury. Injury 46 : 35-41, 2015 https://doi.org/10.1016/j.injury.2014.08.002
  48. Yumoto T, Sato K, Ugawa T, Ichiba S, Ujike Y : Prevalence, risk factors, and short-term consequences of traumatic brain injury-associated hyponatremia. Acta Med Okayama 69 : 213-218, 2015