• Title/Summary/Keyword: Medicinal value and Biomass yield

Search Result 6, Processing Time 0.017 seconds

Salinity and sodicity disturbs growth of medicinal crop Guar (Cyanoposisa tetragonoloba)

  • Ullah, Muhammad Arshad;Rasheed, Muhammad;Mahmood, Imdad Ali
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.2
    • /
    • pp.7-11
    • /
    • 2018
  • Salinity is one of the major and increasing problems in irrigated agriculture in Pakistan. Salinity stress negatively affects the growth and yield of plants guar (Cyanoposisa tetragonoloba). This experiment was conducted to evaluate the effects of ($4dSm^{-1}+13.5(mmol\;L^{-1})^{1/2}$, $5dSm^{-1}+25(mmol \;L^{-1})^{1/2}$, $5dSm^{-1}+30(mmol\;L^{-1})^{1/2}$, $10dSm^{-1}+25(mmol\;L^{-1})^{1/2}$ and $10dSm^{-1}+30(mmol \;L^{-1})^{1/2}$) on biomass yield of guar against salinity tolerance. Maximum biomass yield ($54.50gpot^{-1}$) was produced by $4dSm^{-1}+13.5(mmol\;L^{-1})^{1/2}$ treatment. Biomass produce was reduced with the increase of the salts toxicity. Minimum biomass yield ($30.17gpot^{-1}$) was attained under $10dSm^{-1}+30(mmol \;L^{-1})^{1/2}$. $5dSm^{-1}+25(mmol\;L^{-1})^{1/2}$ treatment exhibited improved outcome i.e. the least diminution % over control (18.66). Salinity cum sodicity showed staid effect on the growth reduction from 18.66% to 44.64%. This reduction fissure was impacted by the toxic effect of salinity and sodicity on Guar growth. Salinity- sodicity behaved toxic impact on the growth reduction from 18.66% to 44.64%. Based on the findings, guar (Cyanoposisa tetragonoloba) grows better at $4dSm^{-1}+13.5(mmol \;L^{-1})^{1/2}$ treatment.

Medicinal Plant Lemon Grass (Cymbopogon Citratus) Growth under Salinity and Sodicity

  • Ullah, Muhammad Arshad;Rasheed, Muhammad;Hyder, Syed Ishtiaq
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Salinity with sodic condition disturbs germination, retards emergence, and slow down seedling development of Lemon Grass (Cymbopogon citratus).Lemongrass is a perennial grass plant widely distributed worldwide and most especially in tropical and subtropical countries. This research experiment was designed to evaluate the influences of (4 dSm-1+ 13.5 (mmol L-1)-1/2, 5 dSm-1+ 25 (mmol L-1)1/2, 5 dSm-1+ 30 (mmol L-1)1/2, 10 dSm-1+ 25 (mmol L-1)1/2 and 10 dSm-1+ 30 (mmol L-1)1/2) on biomass produce of lemon grass against salt tolerance. The uppermost biomass yield (45.53 gpot-1) was produced by 4 dSm-1+ 13.5 (mmol L-1)1/2 treatment. The increase in the intensity of salts reduced the growth of lemon grass. Lower biomass yield (79.33 gpot-1) was gained at 10 dSm-1+ 30 (mmol L-1)1/2. 5 dSm-1+ 25 (mmol L-1)1/2 treatment performed enhanced outcome i.e. the least reduction % over control (5.87). Salinity- sodicity showed serious effect on the growth reduction from 5.87% to33.60%. This reduction gap was affected by the negative effect of salinity and sodicity on Linseed growth. Salinity- sodicity showed severe impact on the growth reduction from 5.87% to33.60%. Based on the findings, lemon Grass (Cymbopogon citratus).was capable to grow up the maximum at 4 dSm-1+ 13.5 (mmol L-1)1/2 treatment.

Comparison of Cosmetical Activities of Curcuma longa L. Leaf Extracts Using Different Extraction Methods (추출 방법에 따른 강황 잎 추출물의 향장 활성 비교)

  • Kim, Nam Young;Lim, Hye Won;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • Cosmetic activities of the leaves of Curcuma longa L. were compared according to different drying methods, to expand the use of the by-products of Curcuma longa L. The highest extraction yield of 29.4% was obtained from vacuum drying process (VD), whose value was very close to 29.2% from freeze drying process (FD). Relatively lower extraction yield were observed as 24.5% and 25.3% from the raw leaf (RL) as control and hot air drying process (HD). The cytotoxicity was observed lower FD and VD than RL and HD. It shows that cytotoxicity was closely related to cosmetic activities such as tyrosinase and melanin inhibition activities by showing much better cosmetic activities of the extracts from both FD and VD than those from the RL and HD. It was interesting that was differences of the cosmetic activities and cytotoxicity between FD and VD, which implies that VD method should be a more efficient process than FD method in terms of drying time and operation costs: 6 hours vs 24 hours and 3-5 times higher extraction costs in drying. It was observed that VD is more excellent dry method than others. This result could be utilized to effectively dry other soft plant biomass.

Investigation of Growth Characteristics of Salix gracilistyla Clones for Promoting Woody Biomass Resources (목질계 바이오매스 생산을 위한 갯버들의 생장특성)

  • Lee, Hyunseok;An, Chanhoon;Kang, Junwon;Lee, Wiyoung;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • This study was investigated to select superior population and clones of Salix gracilistyla for promoting woody biomass resources through creating of short rotation coppices (SRC). Plant materials were collected from seven different population groups of S. gracilistyla and planted at two different nursery sites in Chuncheon and Yongin. Height and root collar diameter showed statistically significant differeces among population, nursery, and annual growth for three years (p<0.01). Aboveground biomass was harvested to investigate dry weight after 3 years from planting, the Youngwol population showed the highest yield as $4.8kg\;DW\;plant^{-1}$ in Chuncheon nursery which was more than double yield compared to the other nursery planted plants. However, Hongcheon and Wonju populations as $3.3kg\;plant^{-1}$, showed the best yield in Yongin nursery. In addition, there was a significant difference between collected populations and nurseries. But there was statistically significant different interaction between population (Pop) and nursery (Nur) (F value = 3.51, p<0.01). Therefore, the superior populations selected by this experiment could be cultivated as an excellent variety for woody biomass resources through the clonal test.

A Comprehensive Review of Tropical Milky White Mushroom (Calocybe indica P&C)

  • Subbiah, Krishnamoorthy Akkanna;Balan, Venkatesh
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.184-194
    • /
    • 2015
  • A compressive description of tropical milky white mushroom (Calocybe indica P&C var. APK2) is provided in this review. This mushroom variety was first identified in the eastern Indian state of West Bengal and can be cultivated on a wide variety of substrates, at a high temperature range ($30{\sim}38^{\circ}C$). However, no commercial cultivation was made until 1998. Krishnamoorthy 1997 rediscovered the fungus from Tamil Nadu, India and standardized the commercial production techniques for the first time in the world. This edible mushroom has a long shelf life (5~7 days) compared to other commercially available counterparts. A comprehensive and critical review on physiological and nutritional requirements viz., pH, temperature, carbon to nitrogen ratio, best carbon source, best nitrogen source, growth period, growth promoters for mycelia biomass production; substrate preparation; spawn inoculation; different supplementation and casing requirements to increase the yield of mushrooms has been outlined. Innovative and inexpensive methods developed to commercially cultivate milky white mushrooms on different lignocellulosic biomass is also described in this review. The composition profiles of milky white mushroom, its mineral contents and non-enzymatic antioxidants are provided in comparison with button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus). Antioxidant assay results using methanol extract of milky white mushroom has been provided along with the information about the compounds that are responsible for flavor profile both in fresh and dry mushrooms. Milky white mushroom extracts are known to have anti-hyperglycemic effect and anti-lipid peroxidation effect. The advantage of growing at elevated temperature creates newer avenues to explore milky white mushroom cultivation economically around the world, especially, in humid tropical and sub-tropical zones. Because of its incomparable productivity and shelf life to any other cultivated mushrooms in the world, milky white mushroom could play an important role in satisfying the growing market demands for edible mushrooms in the near future.

Production of Bioactive Compounds from Fungi Grown on Ginseng-Steaming Effluent (인삼 유출액에서 생육한 곰팡이로부터 생리 활성 물질의 생산)

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Kim, Na-Mi;Kim, Ha-Kun;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • We described production of bioactive compounds from fungi grown on Korean ginseng-steaming effluents (GSE) for develop high-value added nutraceuticals from Korean GSE. Hansenula anomala KCCM 11473, which grew well in Korean GSE had high RNA content, and its optimal autolysis conditions were established to produce 5'-ribonucleotides (13.9~28.5 mg/g of biomass) at $55^{\circ}C$ and pH 5.0 for 24 h. 5'-Phosphodiesterase and adenyl deaminase were not effective in increasing the yield of 5'-ribinucleatides, but the yield of IMP increased significantly only after the addition of 1.0% adenyl deaminase. Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of S. cerevisiae biomass was produced from 1 g of GSE solid and medicinal ginsenoside-$Rg_3$ contents was determined with 0.033 mg. Mucor miehei KCTC 6011 produced approximately 120 mg of chitosan per g-dry mycelium in 84 h at $25^{\circ}C$ when grown in the GSE (pH 8.0) supplemented with 0.5% yeast extract and 0.002% $CuSO_4$. Chitosan produced by M. miehei KCTC 6011 have deacetylated approximately 56% and its viscosity and molecular weight of the chitosan were 80 cps and $1.07\times10^3$ kDa, respectively. The chitosan at 1.5 mg/ml inhibited 73.9% of the mycelium growth of Rhizotonia solani in 60 h.