• Title/Summary/Keyword: Medical radiation

Search Result 3,888, Processing Time 0.028 seconds

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Survery on Business of the Departments of Radiology in Health Centers (보건소(保健所)의 방사선과(放射線科) 업무(業務)에 관한 조사연구(調査硏究))

  • Choi, Jong-Hak;Jeon, Man-Jin;Huh, Joon;Park, Sung-Ock
    • Journal of radiological science and technology
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 1985
  • We serveyed the actual condition of business of the departments of radiology of 45 health conters (except 3) in the area of Seoul, Kyungki and Inchon from March, 1984 to November, 1984. The results are summarized as follows : 1. T.O. of the radiologic technologist is three persons in each health center of Seoul area, and one person in each one of Kyungki and Inchon area. P.O. is 2-5 persons in Seoul area, 1-2 persons in Kyungki or Inchon area. 2. The number of all the radiologic technologists employed now is 75 persons, and among all of them, when analized by position class 7th is 54.7%, class 8th 28.0%, class 9th is 13.3%, and class 6th is 2.7%, and by sex, female is 68.0%, male is 32.0%, by educational background, for the most part, junior college graduates come to 73.3%, by age group 60% of them is in their twenties, 16.0% is in their thirties and forties, 8.0% is in their fifties, and by career after certificate 60% have the career of 1-5 years, 13.3% have the one of 6-7 years or mor than 21 years, and 6.7% have the one of 11-15 years of 16-20 years. 3. All the diagnostic x-ray equipment being kept is 62, and among them flxing equipment is 71.0%, portable equipment is 29.0% and by rating of X-ray equipment, maximum tube current 100 mA is 46.8%, maximum KV 100KVP is 72.6%, the most part. 4. Photofluorographic camera and hood are equipped in every health center. While, as to the radiographic cassettes, $14{\times}14"$ cassetts are equipped in every health center, but cassettes of other sizes are in half of them. 5. Bucky's table is equipped in 11.9% health centers, the automatic processor is in 21.4%, the photofluorographic film changer is 9.5%, the grid is 73.8%, the protective apron is in 88.1%, and the protective glove is in 57.1% health centers. 6. The number of the people who got the x-ray examination for one year (by the year 1989) is the most, 1,000-6,000 in direct radiography of the chest, or 15,0001-45,000 in the health centers of Seoul area, 5,000-20,000 in Kyungki and Inchon area in photofluorography of the chest. Moreover, other radiographies are being taken extremely limitedly in all health centers. 7. In processing types of x-ray film, automatic processing is used in 9 health centers (21.4%), manual tank processing is in 30 (71.4%), and manual tray processing in 3 (7.2%). 8. As for collimation of x-ray exposure field, "continual using restricted by a subject size" has the most part, 78.6% "restricted using at every radiography" has 19%, and the case of "never considered" has 2.4% response. 9. As for the dosimeter used for radiation control, film badge (35.7%) and pocket dosimeter (26.2%) are used, and in 38.1% health centers the dosimeter is not equipped at all. Consideration of the previous radiation exposure is being done in only one health center. 10. Reading of radiographs is mainly depended on the radiologists electively (45.2%) or on the genral practitioners(45.2%).

  • PDF

VCUG Studies on the Clinical Usefulness of Aids (VCUG 보조기구의 임상적 유용성에 관한 고찰)

  • Choe, Dea yeon;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.529-533
    • /
    • 2015
  • VCUG(Voiding Cystourethrography) study is being performed to check urinary reflex symptom from bladder to ureter or kidney in the method of filling the bladder with radiation opaque contrast agent. However, VCUG study have been performed impersonally, patients have to be naked and open their legs and then void. This method is so impersonal that it is immediately needed to improve the way of testing and crete new aid. Therefore, this study through producing underwear for VCUG, analysis and compares the test time of VCUG, patient radiation dose and patient satisfaction. The target of this study was 79 Male and Female patients who visited genitourinary clinic of PNUYH for their VCUG tests AXIUM Iconos R200(Siemens Medical System : Germany) and self-produced plastic underwears made by vinyl and plasic molding machine were used. The 79 patient were divided into two groups : experiment of patient and comparison group of we patient (using aid) in order to compare, testing time, DAP (dose area product) and patient satisfaction. There was time reduction, from 35.3min of comparison group to 27.8min experimentation group by 7.5min decrease. And comparison group of $4566.6{\mu}Gym^2$(DAP) decreased experimental group (using aid) of $3411.9{\mu}Gym^2$ by $1154.7{\mu}Gym^2$. In the case of patients satisfaction study, anxiety had a drop by 3.45 of comparison group to 2.51 experimentation group by 0.94 decrease. in experimental group. And shame had a drop by 4.02 of comparison group to 3.08 experimentation group by 0.94 increase. in experimental group. Difference of the smooth voiding had a drop by 1.90 of comparison group to 2.84 experimentation group by 0.94 increase. in experimental group. In addition satisfaction had a rise by 1.19 in experimental group. There were also other opinions of uncomfortableness on it and troublesome to wear. VCUG is one of the sensitive care required test. Therefore staff and the aid can give patients such comfortable and the aid can consentive on voiding. As a result test time and DAP can be reduced. It is needed to make testing at more comfortable for patients.

Colony Size Distributions according to in vitro Aging in Human Skin Fibroblasts (피부 섬유모세포 노화에 따른 세포집락 크기의 분포)

  • Kim, Jun-Sang;Kim, Jae-Sung;Cho, Moon-June;Park, Jeong-Kyu;Park, Tae-Hyun
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 1999
  • Purpose : To investigate the percentage of colonies wi1h16or more cells distribution of human skin fibroblast according to in vitro aging, and to evaluate the relationship between percentage of colonies with 10 or more cells and in vivo donor age in human skin fibroblast culture. Material and Method : C1, C2, C3a, and C3b human skin fibroblast samples from three breast cancer patients were used as subjects. The C1, C2, and C3a donor were 44, 54, and 55 years old, respectively. C3a and C3b cells were isolated from the same person. Single cell suspension of skin fibroblasts was prepared with primary explant technique. One hundred cells are plated into 100m1 tissue culture flask and cultured for two weeks. The colony size was defined as colonies with 16 or more cells. The cultured cell was stained with crystal violet, and number of cells in each colony was determined with stereo microscope at $\times$10 magnification. Passage number of C1, C2, C3a and C3b skin fibroblast were 12th, 17th, and 14th, respectively. Results : Percentage of colonies with 16 or more cells of skin fibroblast samples decreased with increasing in vitro passage number. In contrast, cumulative population doublings of skin fibroblast sample increased with increasing in vitro passage number. Percentage of colonies with 16 or more cells also decreased with increasing population doublings in human skin fibroblast culture. There was strong correlation with percentage of colonies with 16 or more cells and population doublings En C3a skin fibroblast sampie. At the same point of population doublings, the percentage of colonies with 16 or more cells of the young C1 donor was higher level than the old C3a donor. Conclusion : The population doublings increased with increasing in vitro passage number but percentage of colonies with 16 or more cells decreased. The results of this study imply that percentage of colonies with 16 or more cell is useful as a indicator of in vitro human skin fibroblast aging and may estimate the in vivo donor age.

  • PDF

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols (64 채널 Multi-Detector Computed Tomography를 이용한 관상동맥검사의 선량 : 검사 프로토콜 다변화에 따른 환자선량 감소)

  • Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Purpose : To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Materials and Methods : Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation ($0.625\;mm{\times}64\;ea$), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of $40{\sim}80%$ of R-R interval and 120mA(80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. Results : The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with that of conventional coronary CTA. And heart dose was 33.8 mGy, this represents 67.4% reduction. In the sequential scan technique under prospective ECG gating with low kVp the mean effective dose was 3.0 mSv, this represents an 83.2% reduction compared with that of conventional coronary CTA. And heart dose was 17.7 mGy, this represents an 82.9% reduction. Conclusion : In coronary CTA at retrospectively ECG gated helical scan, cardiac dose modulation technique using low kVp reduced dose to 50% above compared with the conventional helical scan. And the prospectively ECG gated sequential scan offers substantially reduced dose compared with the traditional retrospectively ECG gated helical scan.

  • PDF

Usefulness in Evaluation of NM Image which It Follows in Onco. Flash Processing Application (Onco. Flash Processing 적용에 따른 핵의학 영상의 유용성 평가)

  • Kim, Jung-Soo;Kim, Byung-Jin;Kim, Jin-Eui;Woo, Jae-Ryong;Kim, Hyun-Joo;Shin, Heui-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Purpose: The image processing method due to the algorism which is various portion nuclear medical image decision is important it makes holds. The purpose of this study is it applies hereupon new image processing method SIEMENS (made by Pixon co.) Onco. flash processing reconstruction and the comparison which use the image control technique of existing the clinical usefulness it analyzes with it evaluates. Materials & Methods: 1. Whole body bone scan-scan speed 20 cm/min, 30 cm/min & 40 cm/min blinding test 2. Bone static spot scan-regional view 200 kcts, 400 kcts for chest, pelvis, foot blinding test 3. 4 quadrant-bar phantom-20000 kcts visual evaluation 4. LSF-FWHM resolution comparison ananysis. Results: 1. Raw data (20 cm/min) & processing data (30 cm/min)-similar level image quality 2. Low count static image-image quality clearly improved at visual evaluation result. 3. Visual evaluation by quadrant bar phantom-rising image quality level 4. Resolution comparison evaluation (FWHM)-same difference from resolution comparison evaluation Conclusion: The study which applies a new method Onco. flash processing reconstruction, it will be able to confirm the image quality improvement which until high level is clearer the case which applies the method of existing better than. The new reconstruction improves the resolution & reduces the noise. This enhances the diagnostic capabilities of such imagery for radiologists and physicians and allows a reduction in radiation dosage for the same image quality. Like this fact, rising of equipment availability & shortening the patient waiting move & from viewpoint of the active defense against radiation currently becomes feed with the fact that it will be the useful result propriety which is sufficient in clinical NM.

  • PDF

A Comparative Study on the Quality of Living for Therapeutic Cancer and Hospiece Patients (치료 암환자와 호스피스 환자에 대한 삶의 질 비교)

  • Kim SeungKook;Rhee DongSoo;Rou JaeMan;Kim JongDeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.79-89
    • /
    • 2004
  • This study carried a comparative analysis of quality of living perceived by cancer and hospiece patients who received radiotheraphy, and influential factors in order to provide basic data for nursing goals and establishment of strategy. The subjects of the study were 50 cancer patients who were more than twenty years old and was receiving radiotheraphy in therapeutic radiology department of C university hospital, and fourteen hospiece patients who were in J hospital in Gwangju. They were conveniently sampled according to the selection standard, and researchers personally interviewed them using questionnaire and patient scripts to obtain necessary data. The results were presented as follows: 1. When cancer and hospiece patients were examined demographically, the number of 60 year-old patients were the most. The subjects whose marriage period was more than thirty-one years were the most. In medical expense, more than $70.0\%$ of the patients bore their expenses themselves. 2. When disease-related characteristics of the cancer and pospiece patients were exmained, more than $75\%$ of the patients had experience of being in hospital, and more than $60.0\%$ experienced operation. However, for prevalence period, $57.5\%$ of the cancer patients had less than six months, and $64.3\%$ of the hospiece patients had more than two years. 3. For physical symptoms of cancer patients, $77.5\%$ had fatigue, $60.0\%$ had loss of appetite, and $52.5\%$ had loss of weight while for the hospiece patients, $100\%$ had loss of weight, and $92.9\%$ had fatigue and loss of appetite. For the cancer patients, $0.0\%$ had swelling, and $7.5\%$ had bleeding, For the hospiece patients, $7.1\%$ had change in skin, and $14.3\%$ had diarrhea. 4. Mean score of the cancer subjects were as follows: family support, social support, emotional and spiritual support, physical symptoms, and periods were 3.87, 2.88, 3.10, 2.80, and 2.94 respectively. Those of the hospiece patients were 3.80, 1.96, 1.58, 2.64 and 3.24 respectively. 5. Mean score of family support of both patients were almost identical, but in character, a considerable difference was found: 3.10 and 1.58. In qualify of living, the mean score of hospiece patients was slightly lower.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

Automated patient set-up using intensity based image registration in proton therapy (양성자 치료 시 Intensity 기반의 영상 정합을 이용한 환자 자동화 Set up 적용 방법)

  • Jang, Hoon;Kim, Ho Sik;Choe, Seung Oh;Kim, Eun Suk;Jeong, Jong Hyi;Ahn, Sang Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.97-105
    • /
    • 2018
  • Purpose : Proton Therapy using Bragg-peak, because it has distinct characteristics in providing maximum dosage for tumor and minimal dosage for normal tissue, a medical imaging system that can quantify changes in patient position or treatment area is of paramount importance to the treatment of protons. The purpose of this research is to evaluate the usefulness of the algorithm by comparing the image matching through the set-up and in-house code through the existing dips program by producing a Matlab-based in-house registration code to determine the error value between dips and DRR to evaluate the accuracy of the existing treatment. Materials and Methods : Thirteen patients with brain tumors and head and neck cancer who received proton therapy were included in this study and used the DIPS Program System (Version 2.4.3, IBA, Belgium) for image comparison and the Eclipse Proton Planning System (Version 13.7, Varian, USA) for patient treatment planning. For Validation of the Registration method, a test image was artificially rotated and moved to match the existing image, and the initial set up image of DIPS program of existing set up process was image-matched with plan DRR, and the error value was obtained, and the usefulness of the algorithm was evaluated. Results : When the test image was moved 0.5, 1, and 10 cm in the left and right directions, the average error was 0.018 cm. When the test image was rotated counterclockwise by 1 and $10^{\circ}$, the error was $0.0011^{\circ}$. When the initial images of four patients were imaged, the mean error was 0.056, 0.044, and 0.053 cm in the order of x, y, and z, and 0.190 and $0.206^{\circ}$ in the order of rotation and pitch. When the final images of 13 patients were imaged, the mean differences were 0.062, 0.085, and 0.074 cm in the order of x, y, and z, and 0.120 cm as the vector value. Rotation and pitch were 0.171 and $0.174^{\circ}$, respectively. Conclusion : The Matlab-based In-house Registration code produced through this study showed accurate Image matching based on Intensity as well as the simple image as well as anatomical structure. Also, the Set-up error through the DIPS program of the existing treatment method showed a very slight difference, confirming the accuracy of the proton therapy. Future development of additional programs and future Intensity-based Matlab In-house code research will be necessary for future clinical applications.

  • PDF