• Title/Summary/Keyword: Medical laser

Search Result 721, Processing Time 0.025 seconds

Mouse Tumor Necrosis Using Photodynamic Therapy (광역학적 치료법을 이용한 쥐의 악성종양 괴사)

  • 임현수;변상현
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • In this paper, we investigated the effects of the photodynamic therapy(PDT) for the tumor mass in mice. In the experimental method, we divided the mice into two control and test group which HepG2 and HeLa cell line induced cancer mass in mice. Photofrin was administered to the tumor-bearing mouse, followed 30 hours later by 630nm and 650nm laser light exposure. After photodynamic therapy we analyzed the two mice group for the tumor mass size, tumor growth, tumor cell necrosis, pathological anatomy change. According to the results, tumor cell necrosis was shown in the tissues which the reduce size of tumor and tumor cell necrotic change according to the irradiation time and light dose amount. The considerable difference, however, between the 630nm and 650nm wavelength was not found for the tumor cell necrotic change and other damage of normal tissue was not found.

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Investigation of Angiotensin Glycosylation by MALDI-TOF and ESI Tandem Mass Spectrometry

  • Park, Soo-Jin;Park, Deok-Hie;Sul, Soo-Hwan;Oh, Sung-Hwan F.;Park, In-Sook;Chung, Doo-Soo;Kim, Hie-Joon;Kim, Min-Sik;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1791-1800
    • /
    • 2004
  • Angiotensin I, a model decapeptide, was glycosylated and partially hydrolyzed with HCl (6 N, 80 $^{\circ}C$, 4 h), aminopeptidase, and carboxypeptidase Y. A single peptide mass map obtained from truncated peptides in the partial acid hydrolysate of angiotensin and its glycosylation product mixture by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry enabled sequencing of angiotensin by a combinatorial procedure. MALDI-TOF and electrospray ionization (ESI) tandem mass spectrometric results indicate that both the N-terminal amino group of aspartic acid and the guanidinium group of the second residue arginine are glycosylated.

Cerebral Blood Flow Monitoring by Diffuse Speckle Contrast Analysis during MCAO Surgery in the Rat

  • Yeo, Chaebeom;Kim, Heejaung;Song, Cheol
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.433-439
    • /
    • 2017
  • The rodent model has been used frequently to understand stroke pathophysiology, due to its low cost and the large spectrum of genetic strains available. Here, we present a diffuse speckle contrast analysis system (DSCA) with a $1{\times}2$ optical switch that was used to non-invasively assess cerebral blood flow (CBF) changes in the rat during intraluminal suturing for middle cerebral artery occlusion (MCAO) surgery. The blood flow index (BFI) in the left hemisphere was lower than that in the right hemisphere because the left middle cerebral artery was occluded. Furthermore, the performance of the DSCA system was compared with that of commercial laser Doppler flowmetry. The changes in the BFI measured by the two systems were correlated strongly. The DSCA system was less sensitive to motion artifacts and able to measure relatively deep tissue flow in the rat's brain. In conclusion, the DSCA system secured CBF monitoring during surgery in a rodent model without craniotomy.

Bronchoscopic Intervention for Airway Disease (기도질환 환자의 치료기관지경술)

  • Kim, Ho-Joong
    • Korean Journal of Bronchoesophagology
    • /
    • v.14 no.2
    • /
    • pp.10-16
    • /
    • 2008
  • Surgical resection and reanastomosis has been the treatment of choice in patients with tracheobronchial stenosis. Recent development of bronchoscopic intervention has been replacing the role of surgery in these patients. After summarizing the upto date data of bronchoscopic intervention, the proper management of tracheobronchial stenosis will be presented. Bronchoscopic intervention would be much effective when performed under rigid bron- choscopy, due to the stable patients' condition and endoscopic view. The usual method of intervention includes ballooning, Nd-YAG laser resection, bougienation, mechanical airway dilatation, stenting and photodynamic therapy. Silicone stents are very effective in patients with tracheobronchial stenosis to maintain airway patency. Bronchoscopic intervention provided immediate symptomatic relief and improved lung function in most of patients. After airway stabilization, stents were removed successfully in 2/3 of the patients at a 12-18 months post-insertion. Less than 5% of patients eventually needs surgical management. Acute complications, including excessive bleeding, pneumothorax, and pneumomediastinum develops in less than 5% of patients but managed without mortality. Stent-related late complications, such as, migration, granuloma formation, mucostasis, and restenosis are relatively high but usually controlled by follow-up bronchoscopy. In conclusion, bronchoscopic intervention, including silicone stenting could be a useful and safe method for treating tracheobronchial stenosis.

  • PDF

A Study on the 3-D Information Abstraction of object using Triangulation System (물체의 3-D 형상 복원을 위한 삼각측량 시스템)

  • Kim, Kuk-Se;Lee, Jeong-Ki;Cho, Ai-Ri;Ba, Il-Ho;Lee, Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.409-412
    • /
    • 2003
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc... But it is not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Second, the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I study the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which does not require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.

  • PDF

A Study on Characteristics of Unsteady Laminar Flows in Squaresectional $180^{\circ}$ Curved Duct (정사각단면 $180^{\circ}$ 곡관덕트의 입구영역에서 비정상층류유동의 유동특성에 관한 연구)

  • Park, G.M.;Mo, Y.W.;Cho, B.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.515-524
    • /
    • 1996
  • The flow characteristics of developing unsteady laminar flow in a square-sectional $180^{\circ}$ curved duct are experimentally investigated by using laser doppler velocimerty (LDV) system with data acquisition and processing system of rotating machinery resolver(RMR) and PHASE software. The major flow characteristics of developing laminar pulsating flows are presented by mean velocity profilel velocity distribution of secondary flow, wall shear stress distributions, entrance lengths according to dimensionless angular frequency($\omega^+$), velocity amplitude ratio($A^1$), and time-averaged Dean number($De_ta$). The velocity profiles and wall shear stress distribution of laminar pulsating flow with dimensionlessangular frequency show the flow characteristics of the quasi-steady laminar flow in a curved duct. The developing region of laminar pulsatile flows in a square-sectional $180^{\circ}$ curved duct is extended to the curved duct angle of approximately $120^{\circ}$ under the present experimental condition.

  • PDF

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Analysis of Facial Asymmetry

  • Choi, Kang Young
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Facial symmetry is an important component of attractiveness. However, functional symmetry is favorable to aesthetic symmetry. In addition, fluctuating asymmetry is more natural and common, even if patients find such asymmetry to be noticeable. However, fluctuating asymmetry remains difficult to define. Several studies have shown that a certain level of asymmetry could generate an unfavorable image. A natural profile is favorable to perfect mirror-image profile, and images with canting and differences less than $3^{\circ}-4^{\circ}$ and 3-4 mm, respectively, are generally not recognized as asymmetry. In this study, a questionnaire survey among 434 medical students was used to evaluate photos of Asian women. The students preferred original images over mirror images. Facial asymmetry was noticed when the canting and difference were more than $3^{\circ}$ and 3 mm, respectively. When a certain level of asymmetry is recognizable, correcting it can help to improve social life and human relationships. Prior to any operation, the anatomical component for noticeable asymmetry should be understood, which can be divided into hard tissues and soft tissue. For diagnosis, two-and three-dimensional (3D) photogrammetry and radiometry are used, including photography, laser scanner, cephalometry, and 3D computed tomography.

3D-printed titanium implant with pre-mounted dental implants for mandible reconstruction: a case report

  • Park, Jung-Hyun;Odkhuu, Michidgerel;Cho, Sura;Li, Jingwen;Park, Bo-Young;Kim, Jin-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.28.1-28.4
    • /
    • 2020
  • Background: This clinical case presented a novel method of segmental mandible reconstruction using 3D-printed titanium implant with pre-mounted dental implants that was planned to rehabilitate occlusion. Case presentation: A 53-year-old male who suffered osteoradionecrosis due to the radiation after squamous cell carcinoma resection. The 3D-printed titanium implant with pre-mounted dental implant fixtures was simulated and fabricated with selective laser melting method. The implant was successfully inserted, and the discontinuous mandible defect was rehabilitated without postoperative infection or foreign body reaction during follow-ups, until a year. Conclusions: The 3D-printed titanium implant would be the one of the suitable treatment modalities for mandible reconstruction considering all the aspect of mandibular functions.