• Title/Summary/Keyword: Medical image equipment

Search Result 177, Processing Time 0.024 seconds

Image Quality Analysis According to the of a Linear Transducer (선형 탐촉자에서 관심 시각 영역 변화에 따른 화질 분석)

  • Ji-Na, Park;Jae-Bok, Han;Jong-Gil, Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.975-984
    • /
    • 2022
  • Since a linear transducer has an area of interest equal to the length of the transducer, the area of interest can be expanded using the virtual convex function installed in the device.However, it was thought that the change in the direction of the ultrasonic sound velocity according to the change in the visual area of interest would affect the image quality, so this was objectively confirmed. For this study, image evaluation and SNR·CNR of the phantom for ultrasound quality control were measured. As a result, in the phantom image evaluation, both images were able to identify structures in functional resolution, grayscale, and dynamic range. However, it was confirmed that the standard image was excellent in the reproducibility of the size and shape of the structure. As a result of SNR·CNR evaluation, SNR·CNR of most trapezoidal images was low, except for structures at specific locations. In addition, through the statistical analysis graph, it was further confirmed that the SNR and CNR for each depth decreased as the size of the cystic structure decreased. Through this study, it was confirmed that the use of the function has the advantage of providing a wide visual area of interest, but it has an effect on the image quality. Therefore, when using the virtual convex function, it is judged that the examiner should use it in an appropriate situation and conduct various studies to acquire high-quality images and to improve the understanding and proficiency of the equipment.

The Accuracy of the Table Movement During a Whole Body Scan (전신 영상 검사 시행 시 테이블 이동속도의 정확성에 관한 연구)

  • Lee, Ju-Young;Jung, Woo-Young;Jung, Eun-Mi;Dong, Kyung-Rae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.86-91
    • /
    • 2009
  • Purpose: The whole body scan in Nuclear Medicine is a widely accepted examination and procedure. Especially, it is mainly used in bone, I-131, MIBI, and HMPAO WBC scans. The diverse uses of the whole body scan range from the HMPAO WBC scan with a speed of 13cm/min, to a whole body bone scan using the Onco. Flash technique with a speed of 30cm/min. The accuracy of table movement has a strong correlation with the image quality, and inaccuracy of speed could negatively affect the image quality. The purpose of this study is to evaluate the accuracy of the table movement while considering the influence of the age of the equipment and the variability in the weight of the patients. Material and Methods: The study was conducted using two of Seoul Asan Medical Center's SIEMENS gamma cameras which are commonly used in our whole body study. The first one is the oldest gamma camera, an ECAM plus (installed in 2000), and the last is brand new one, a SYMBIA T2 (installed in 2008). Three trials were conducted with the tables moving at a different speed each time; 10, 15 and 30 cm/min. The tables' speeds were measured by checking how long it took for the table to move 10cm, and this was repeated every 10cm until the table reached 100 cm. With an average body weight of the patients of about 60~70 kg, the table speed was measured with weights of 0 kg, 66 kg and 110 kg placed on the table, then compared among conditions. Results: The coefficient of variance (CV) of the ECAM plus showed 1.23, 1.42, 2.02 respectively when the table movement speeds were set at 10, 15, and 30 centimeters per minute. Under the same conditions, the SYMBIA T2 showed 1.23, 1.83 and 2.28 respectively. As table movement speed more, the variance of CV as the speed increases. When the patient body weight was set to 0, 66 and 110kg, the CV values of both cameras showed 0.96, 1.45, 2.08 (0 Kg), 1.32, 1.72, 2.27 (66 Kg) and 1.37, 1.73, 2.14 (110 Kg). There was no significant difference (p>0.05) in 95 percent of confidence intervals and measured CV values were acceptable. However, the CV value of the SYMBIA T2 was relatively larger than the ECAM plus. Conclusion: The scan speed of the whole body scan is predetermined based on which examination is being performed. It is possible for the accuracy of the speed to be affected, such as the age of the equipment, the state of the bearings or the weight of a patient. These factors can have a negative impact on the diagnostic consistency and the image quality. Therefore, periodic quality control should be needed on the gamma cameras currently being used, focusing on the table movement speed in order to maintain accuracy and reproducibility.

  • PDF

Study on Radiation dose in according to Magnification's rate in fluoroscopy (투시 조영 검사 시 확대율에 따른 피폭선량에 관한 고찰)

  • Kang, Kyeong-Mi;Hong, Seon-Sook;Seong, Min-Sook;Song, Woon Heung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • Purpose : The purpose of this study is the magnification rates depending on the area of patient dose (DAP) and glass dosimeter see the change of the dose according to the dose characteristics of low-magnification aims to raise standards. Materials and Method : Direct DR equipment Sonialvision DAR-8000f, Shimadzu was used, the patient entrance dose measurements to the surface of the Rando Phantom of the neck and the abdomen was placed on the Xi unfors. glass dosimeter for measuring organ doses at the same time the Rando Phantom of the major organs in place by inserting a 9 ", 12", 15 ", 17" and 30 seconds for each magnification were measured according in fluoroscopy. DAP meter area of the patient dose was measured. Result : Esophagography at 17" 143% than 9"magnification the average area dose was increased. Organ dose of Esophagography at 17" was decreased 25.32% than 9" magnification. UGI at 17" was increased 129.73% DAP than 9" magnification. Organ dose of UGI at 17" was decreased 23.32% than 9" magnification. Where the major organs of magnification at 17" were decreased(lung -25.96%, stomach -33.09%, spleen -27.81%, liver -4.92%) than 9" magnification. Conclusion : Expected to get better quality image While using the proper magnification, and have recognition that difference Organ doses and DAP meter in fluoroscopy.

  • PDF

A Case Study on the MRI Profitability of a General Hospital (한 종합병원의 MRI 채산성 사례 연구)

  • Kang, Chang-Yeol;Song, Sung-Ho;Lim, Kyeong-Tae
    • The Korean Journal of Health Service Management
    • /
    • v.4 no.1
    • /
    • pp.145-156
    • /
    • 2010
  • The purpose of this study is one of high price medical equipment wished to grasp propriety factor about the MRI introduction, analyzing payability through cost accounting into compensation. It was investigated from January 1 to December 31, 2007 about the MRI of a General Hospital. Expectation availability was 23.2 cases, but actual availability did achievement more than 196.1% with 45.5 items. It is estimated that there are a lot of occurrence cases because great reasons that actual availability increases more than expectation availability is excellent resolving power than a CT, and is device that prefer to reason back that radiation damage is less in person body. The followings show the main results of this study. 1. The MRI was construed in order of cost accounting, wave and personnel expenses 45.4%, administrative expenses 53.0%, and material costs 1.6%. 2. According to CVP (Cost-volume-profit) analysis, BEP (Break Even Point) profit is 173,931,428 won for 11 months, and break even usage number of items are 37.5 cases, and separation usage number of items were confirmed by 1.4 cases. Therefore, was construed that can achieve BEP within 11 months though usage number of items keeps 1.4 items day to create the MRI's hospital operation profit. 3. Estimated limit profitability appears high by 96.7%, exceed fixed charges even if when is non-benefit and when it is benefit consider variable, is judged that the MRI's addition induction helps in hospital management enhancing earning rates.

Using 3D image-based body shape Measurement to increase the accuracy of body shape Measurement (체형 측정의 정확도를 높이기 위한 3차원 영상 기반의 체형 측정 활용)

  • So, Ji Ho;Jeon, Young-Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.803-806
    • /
    • 2020
  • The body shape measurement method using 3D images has been widely used due to the recent development of 3D measurement cameras and algorithms. Existing 3D imaging devices are expensive devices, and there is a limit to their universalization. Due to the recent spread of inexpensive 3D cameras and the development of various measurement methods, various possibilities are being shown. It is expected to have a great impact on the medical device market that requires accurate data collection. Various medical device products using artificial intelligence are emerging, and accurate data collection is the most important to develop accurate artificial intelligence algorithms. Collection equipment using 3D cameras is expected to act as a major factor in the development of artificial intelligence algorithms using 3D images.

The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT (상·하지 뼈 SEPCT/CT 검사에서 평판형 CT의 피폭저감 영향에 관한 고찰)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT. Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18. Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results. Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.

  • PDF

The dose distribution and DVH change analysis wing to effect of the patient setup error (환자 SET-UP ERROR에 따른 선량분포와 DVH 변화 분석)

  • Kim KyoungTae;Ju SangGyu;Ahn JaeHong;Park YoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.81-89
    • /
    • 2004
  • Introduction : The setup error due to the patient and the staff from radiation treatment as the reason which is important the treatment record could be decided is a possibility of effect. The SET-UP ERROR of the patient analyzes the effect of dose distribution and DVH from radiation treatment of the patient. Material & Methode : This test uses human phantom and when C-T scan doing, It rotated the Left direction of the human phantom and it made SET-UP ERROR , Standard plan and 3mm, 5mm, 7mm, 10mm, 15mm, 20mm with to distinguish, it made the C-T scan error. With the result, The SET-UP ERROR got each C-T image Using RTP equipment It used the plan which is used generally from clinical - Box plan, 3Dimension plan( identical angle 5beam plan) Also, ( CTV+1cm margin, CTV+0.5cm margin, CTV+0.3,cm margin = PTV) it distinguished the standard plan and each set-up error plan and The plan used a dose distribution and the DVH and it analyzed Result : The Box4 the plan and 3Dimension plan which it bites it got similar an dose distribution and DVH in 3mm, 5mm From rotation error and Rectilinear movement( $0\%{\sim}2\%$ ). Rotation error and rectilinear error 7mm, 10mm, 15mm, 20mm appeared effect it will go mad to a enough change in treatment ( $2\%{\sim}^11\%$ ) Conclusion : The diminishes the effect of the SET-UP ERROR must reduce move with tension of the patient Also, we are important accessory development and the supply that it reducing of reproducibility and the move

  • PDF

A Study on the Implementation of the Multi-Process Structured ISDN Terminal Adaptor for Sending the Ultra Sound Medical Images (다중처리 구조를 갖는 초음파 의료영상 전송용 ISDN(Integrated Services Digital Network) TA(Terminal Adaptor) 구현에 관한 연구)

  • 남상규;이영후
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.317-324
    • /
    • 1994
  • This paper proposed a new method in the implementation of ISDN (integrated services digital network) LAPD (link access procedure on the D-channel) and LAPB (link access procedure on the B-channel) protocols. The proposed method in this paper implement ISDW LAPD protocol through multi-tasking operating system and adopt a kernel part that is changed operating system to target board. The features of implemented system are (1) the para.llel processing of the events generated at each layer, as follows (2) the supporting necessary timers for the implementation of ISDW LAPD protocol from the kernel part by using software, (3) the recommanded SAP (Service Access Point) from CCITT was composed by using port function in the operating system. With the proposed method, the protocols of ISDH layerl, layer2 and layer3 (call control) were implemented by using the kernel part and related tests were carried out by connecting the ISDH terminal simulator to ISDN S-interface system using the ISDN LAPD protocol The results showed that ISDW S-interface terminals could be discriminated by TEI (Terminal Equipment Identifier) assignment in layer 2 (LAPD) and the message transmission of layer 3 was verified by establishing the multi-frame transmission and then through the path established by the LAPD protocol, a user data was tranfered and received on B-channel with LAPB protocol Thererfore, as new efficient ISDN S-interface environment was implemented in the thesis, it was verified that the implemented system can be utilized by connecting ISDW in the future to transfer a medical image data.

  • PDF

Diagnostic Application of Temporomandibular Joint Disorder and Ultra Sound Guided Oral &Maxillofacial application (초음파를 이용한 턱관절질환의 진단과 초음파 가이드의 활용)

  • Seong, Tae-Hwan;Park, Jung-Hyun;Kim, Sun-Jong
    • The Journal of the Korean dental association
    • /
    • v.55 no.11
    • /
    • pp.789-799
    • /
    • 2017
  • Ultrasound images are noninvasive, can be observed in real time, have no radiation exposure, do not cause pain, and are not restricted in use depending on the patient's prosthetic implant or medical condition. Since the use of ultrasound in the dental field was first applied for tooth preparation in 1957, the use of diagnostic ultrasound for the first time in 1963 has been reported. Currently, it is used in the diagnosis of soft tissue lesions such as malignant tumor or salivary gland disease, fine needle aspiration test, temporomandibular joint disease, lymph node metastasis, measurement of muscle thickness and inflammatory diseases, differentiation of periapical cyst and granulation tissue, measurement of periodontal tissue thickness. The ultrasound image can be visualized in real time. The clinician can explain the structure to the patient while consulting the patient and consult the patient. When injecting the drug into a specific site or aspirating a specific site or substance, So that it can be confirmed and practiced. Recently, ultrasonic equipment specialized in the dental field has been developed and marketed, and it is expected that the use of ultrasonic waves will become active in the dentistry. In the future, development of popular equipment with size and frequency suitable for dental diagnosis and various researches on maxillofacial ultrasonic anatomy. If clinical studies are continuously carried out to demonstrate efficacy, ultrasound is expected to aid in accurate diagnosis and treatment throughout the dentistry.

  • PDF

Study on Image Quality and Radiation Dose due to the Arm Position in the Abdomen/Pelvis CT (복부/골반 CT 검사 시 팔의 위치에 따른 방사선 선량과 영상화질 비교 연구)

  • Lee, Jongwoong;Won, Doyeon;Jung, Jaeeun;Kim, Hyeongyun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.337-342
    • /
    • 2015
  • The one-year-follow-up test of abdomen/pelvis from 10 patients who were scanned more than twice a years were analyzed the radiation dose and image quality depend on the position of the arm retrospectively from January to December in 2013. There were classified two groups, group A was examined with raising an arm on standard position and group B was performed with lowering an arm, respectively. Group A of an average mAs from the first dose amount was shown 11.4% less compared to Group B. And the value of CTDI from Group B also was investigated 11.3% less. To compare the quality comparison of the second image as histogram value, the value of max from both of two groups was measured similarly. However, a big difference was shown from the value of min and SD, the short dose was appeared depends on the position of arm even though Group A was radiated more than Group B. Less exposure to the medical image quality only by working CT scan when the examiner actively raise the arm before the development and testing of high-end equipment introduction of complex algorithms for obtaining an optimized image will be provided to the patient.