• Title/Summary/Keyword: Medical image equipment

Search Result 177, Processing Time 0.026 seconds

Performance Evaluation of Medical Image Transmission System using TH UWB-IR Technology

  • Lee, Yang-Sun;Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.97-100
    • /
    • 2006
  • In this paper, the transmission service for medical image is proposed via IEEE 802.15.4a on WPAN environment. Also, transmission and receiving performance of medical image using TH UWB-IR system is evaluated on indoor multi-path fading environment. On the results, the proposed scheme can solve the problem of interference from the medical equipment in same frequency band, and minimize the loss due to the indoor multi-path fading environment. Therefore, the transmission with low power usage is possible.

Review of medical imaging systems, medical imaging data problems, and XAI in the medical imaging field

  • Sun-Kuk Noh
    • Journal of Internet Computing and Services
    • /
    • v.25 no.5
    • /
    • pp.53-65
    • /
    • 2024
  • Currently, artificial intelligence (AI) is being applied in the medical field to collect and analyze data such as personal genetic information, medical information, and lifestyle information. In particular, in the medical imaging field, AI is being applied to the medical imaging field to analyze patients' medical image data and diagnose diseases. Deep learning (DL) of deep neural networks such as CNN and GAN have been introduced to medical image analysis and medical data augmentation to facilitate lesion detection, quantification, and classification. In this paper, we examine AI used in the medical imaging field and review related medical image data acquisition devices, medical information systems for transmitting medical image data, problems with medical image data, and the current status of explainable artificial intelligence (XAI) that has been actively applied recently. In the future, the continuous development of AI and information and communication technology (ICT) is expected to make it easier to analyze medical image data in the medical field, enabling disease diagnosis, prognosis prediction, and improvement of patients' quality of life. In the future, AI medicine is expected to evolve from the existing treatment-centered medical system to personalized healthcare through preemptive diagnosis and prevention.

The study of utility about magnetic resonance elastography for measurements of liver stiffness : the comparisons of ADC value & T2 weighted image (간 경화도 측정을 위한 3.0T 자기공명 탄성계수 영상의 유용성에 대한 고찰 : 확산계수 영상 및 T2 강조 영상과의 비교)

  • Kim, Sang-Woo;Kang, Chung-Hwan;Kim, Sung-Ho;Kim, Kyung-Soo;Kim, Soon-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • The purpose of this study is to evaluate the mutual relations by measuring SNR from T2 weighted image and ADC values on the basis of the stiffness values from liver tissues. This study was conducted that total 37 people(23 of males and 11 of females) were taken the liver MRI examination and average age was $54.5{\pm}12.7$ years old. The equipment was MAGNETOM Skyra 3.0T (SIEMENS, Erlangen, Germany) and 32 channel body-array coil. The examination were conducted with HASTE T2 weighted image by axial plane, Spin-echo EPI (echo planner image) DWI (b-value = 800) and Magnetic resonance elastography. The ROIs (region of interest: 200-300 $mm^2$) were established on the basis of the first axial stiffness image corresponded 95% confidence interval from axial stiffness image and then were measured values. After drawing the grid lines, signals were measured SNR from T2 weighted image and ADC values on the same locations that were analysed other 3 planes respectively. The results were showed correlation (0.057) that were increased to SNR from T2 weighted image by increasing stiffness value that no significant difference statistically p = 0.003. Other results were showed correlations (-0.301) that were decreased to ADC values by increasing stiffness values that no significant difference statistically p = 0.088. In the 3.0T equipment, the results may be error in much the same fashion as the 1.5T from ADC values by evaluation of fibrosis stage. However, Magnetic resonance elastography would be useful method that is used to diagnose exactly liver fibrosis stages in the 3.0T.

  • PDF

Performance Evaluation of Computed Tomographic Equipment (CT장치의 성능평가에 관한 연구)

  • Han Dong Kyoon;Kim Moon Chan;Yang Han Joon;Ko Shin Kwan
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.66-85
    • /
    • 2001
  • In medical equipments as complex as a computed tomographic equipment, routine quality control procedures are essential to the detection of small pathologic change in soft tissue as well as and the maintenance of optimal image quality. This study was condu

  • PDF

Classification of submitted nuclear medicine dissertation and directional consideration (핵의학 투고 논문 분류 및 방향성 고찰)

  • Ho-Yeon, Cho;Yeong-Ran, Woo;Kang-Rok, Seo;Gun-Chul, Hong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • Purpose Since 1985, the Korean society of nuclear medicine technology (KSNMT) has been engaged in academic activities related to nuclear medicine imaging. From 2017 to 2021, the papers published in the journal were classified by the specific fields to examine the trends in the research and the direction of nuclear medicine in comparison with the papers submitted to the Korean Society of Nuclear Medicine (KSNM) during the same period. Materials and Methods From 2017 to 2021, papers submitted to KSNMT and KSNM were classified and databaseization using the Excel program by submission type, examination equipment, and examination field. Through this data, the number of papers published in journals by year, the number of papers submitted by detailed fields, and key words by era were analyzed and compared. Results The papers included by journal was 57 KSNMT and 280 KSNM. The major large classification of equipment, PET, Planar and SPECT was 26.3%, 21.1%, 19.3% in the KSNMT, KSNM was 49.6%, 6.4%, and 9.3%, with 66.7% and 65.3%, respectively. the major medium classification of equipment, industrial safety, urogenital system, nervous system, and quality control accounted for 54.4% of the total papers of the total ratio in the KSNMT, while the medium classification of oncology, endocrine system, urogenital system, therapy, and nervous system accounted for 61.1% of KSNM. In the major small classification of image acquisition, improvement effect, and exposure management accounted for 70.2% in KSNMT, while the items of image acquisition, report, and improvement effect accounted for 60.7% in KSNM. The major keywords except for equipment-related keywords such as PET/CT, PET/MR, and SPECT were SUV, Planar Image, and Respiration Gating Method in KSNMT and Ga68, Thyroid, and Lymphoma in the KSNM. Conclusion When checking the last 5 years of submissions, we can see that KSNMT is mainly concerned with image acquisition using existing radiotracers, while KSNM has focused on new radiotracers such as 68Ga, 177Lu, etc., and new medical technologies of theranostic. It has been confirmed that more PET-related papers than other examination equipment will account for a greater number of papers, and it is believed that future submissions will also account for a higher proportion of PET-related papers than other equipment.

Development of Image Quality Measurement Method of Coronary Angiography Using Image Analysis Program (영상 분석 프로그램을 이용한 관상동맥 혈관 조영상의 화질 측정 방법 고안)

  • Seo, Young-Hyun;Song, Jong-Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Research should be actively conducted for the ability of X-ray equipment and Retrospective image analysis of X-ray equipment used in hospitals. Retrospective image analysis of X-ray machines, CT and MRI of radiology and medical equipment has been actively conducted. However, image quality measurement using angiography equipment of angiography room is mostly measured with phantom, and image quality measurement on image after being taken by actual patient is insufficient and researches on accurate image quality measurement method are remarkable. It is in short supply. Therefore, through this study, the researcher devised a method to measure the image quality of the acquired image after coronary angiography, and to provide a high quality image to the operator. The equipment and programs used were angiographic examination equipment (Axiom Artis Zee Ceiling) and Image J program. Subjects were images automatically saved in PACS program after coronary angiography.For image quality measurement, selected the AP Caudal 30° image that show the LCA vessel well and the LAO 30° image that show the RCA vessel well during the coronary angiography. In order to measure the background and ROI of the selected image by selecting an image, a criterion on how to find and measure a section where the overlap of the shadow, such as blood vessel, liver and lung is minimized, is presented. In conclusion, there is no exact standard for analyzing an image quality measurement method of angiography image. Therefore, in order to provide quality images to the practistioners, not only the technicians of the equipment but also the users who actually use them should become researchers and conduct research on image quality measurement in various ways. Thus, it is expected to provide excellent images to patients.

Evaluation of the Resolution Characteristics by Using ATS 535H Phantom for Ultrasound Medical Imaging (초음파 의료영상에서 ATS 535H 팬텀을 이용한 해상력 특성 평가)

  • Jung-Whan, Min;Hoi-Woun, Jeong;Hea-Kyung, Kang
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • This study was purpose to assessment of the resolution characteristics by using ATS 535H Basic quality assurance (QA) phantom for ultrasound. The ultrasound equipment was used Logiq P6 (Ultrasound, GE Healthcare System, Chicago, IL, USA). And the ultrasound transducer were used Convex 4C (4~5.5 MHz), Linear 11L (10~13 MHz), Sector 3SP (3~5.5 MHz) probe. As for the noise power spectrum (NPS) comparison results by using ATS 535H Basic QA ultrasound phantom and Convex 4C, Linear 11L, Sector 3SP probe. The NPS value of the Convex 4C probe image was 0.0049, Linear 11L probe image was 0.0049, Sector 3SP probe image was 0.1422 when the frequency is 1.0 mm-1. The modulation transfer function (MTF) comparison results by using ATS 535H Basic QA ultrasound phantom and Linear 11L probe the MTF value of the 3 cm focus image was 0.7511 and 4 cm focus image was 0.9001 when the frequency is 1.0 mm-1. This study was presented characteristics of spatial resolution a quantitative evaluation methods by using ultrasound medical images for QA of ultrasound medical QA phantom. The quality control (QC) for equipment maintenance can be efficiently used in the clinic due to the quantitative evaluation of the NPS and MTF as the standard methods. It is meaningful in that it is applied mutatis mutandis and presented the results of physical resolution characteristics of the ultrasound medical image.

Image Quality Evaluation according to the Application of Air Mattress on Computed Tomography Equipment Table (전산화단층촬영장비 테이블의 에어 매트리스 적용에 따른 화질평가)

  • Jeon, Sang-Won;Pak, Jae-Yun;Suh, Tae-Suk
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.819-825
    • /
    • 2020
  • The purpose of this study was to evaluate the usefulness of the developed air mattress for reducing the deterioration of image quality due to the scattered radiation generated on the computed tomography equipment table. 5 cm and 10 cm thick air mattresses were developed and the image quality was measured by scanning the AAPM phantom according to thickness and thickness. Statistical significance was confirmed by One Way Analysis of Variance(ANOVA) Compared with the AAPM phantom scanned in the standard method, the image with the air mattress did not show any difference, but when the air mattress was not applied, the CT number and uniformity were low and the noise was high, and the spatial resolution Respectively. The developed air mattress has no harmful effect on the diagnostic image, it is very effective in improving the image quality and can increase the CT image quality by simply applying Air Mattress to existing equipment without using the technology applied to the latest and high-cost equipment.

Analysis of Radiation Exposure Dose according to Location Change during Radiation Irradiation

  • Chang-Ho Cho;Jeong-Lae Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.368-374
    • /
    • 2024
  • During an X-ray examination, the beam of radiation is dispersed in many directions. We believe that managing radiation dose is about providing transparency to users and patients in the accurate investigation and analysis of radiation dose. The purpose of measuring the radiation dose as a function of location is to ensure that medical personnel using the equipment or participating in the operating room are minimally harmed by the different radiation doses depending on their location. Four mobile diagnostic X-ray units were used to analyze the radiation dose depending on the spatial location. The image intensifier and the flat panel detector type that receives the image analyzed the dose by angle to measure the distribution of the exposure dose by location. The radiation equipment used was composed of four units, and measuring devices were installed according to the location. The X-ray (C-arm) was measured by varying the position from 0 to 360 degrees, and the highest dose was measured at the center position based on the abdominal position, and the highest dose was measured at the 90° position for the head position when using the image intensifier equipment. The operator or medical staff can see that the radiation dose varies depending on the position of the diagnostic radiation generator. In the image intensifier and flat panel detector type that accepts images, the dose by angle was analyzed for the distribution of exposed dose by position, and the measurement method should be changed according to the provision of dose information that is different from the dose output from the equipment according to the position.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.