• Title/Summary/Keyword: Medical image analysis

Search Result 924, Processing Time 0.025 seconds

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Computer-Aided Diagnosis in Chest CT (흉부 CT에 있어서 컴퓨터 보조 진단)

  • Goo, Jin Mo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.515-521
    • /
    • 2004
  • With the increasing resolution of modern CT scanners, analysis of the larger numbers of images acquired in a lung screening exam or diagnostic study is necessary, which also needs high accuracy and reproducibility. Recent developments in the computerized analysis of medical images are expected to aid radiologists and other healthcare professional in various diagnostic tasks of medical image interpretation. This article is to provide a brief overview of some of computer-aided diagnosis schemes in chest CT.

Analysis of the main contents and structure of the visceral manifestation theoretical systems in "Hwangjenaegyeong(黃帝內經)" ($\ll$황제내경(黄帝内经)$\gg$ 장상학리론체계적주요내용여결구간석(藏象学理论体系的主要内容与结构简析))

  • Zhang, Yu-Peng
    • Journal of Korean Medical classics
    • /
    • v.23 no.1
    • /
    • pp.125-128
    • /
    • 2010
  • The visceral manifestation theory in the "Hwangjenaegyeong(黃帝內經)" was constructed by the reference of the study of Confucian classics which main characteristics is the extensive application of the five phase theory. "Image" plays an important role in the thinking of the Chinese ancient people and it is the basis of the construction of the visceral manifestation theory. "Concept of holism" is the main directed thinking of the "Hwangjenaegyeong(黃帝內經)" "Four seasons, five viscera, Yin yang" theory is the core contents of the visceral manifestation theory in the "Hwangjenaegyeong(黃帝內經)".

Inter- and Intra-Observer Variability of the Volume of Cervical Ossification of the Posterior Longitudinal Ligament Using Medical Image Processing Software

  • Shin, Dong Ah;Ji, Gyu Yeul;Oh, Chang Hyun;Kim, Keung Nyun;Yoon, Do Heum;Shin, Hyunchul
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • Objective : Computed tomography (CT)-based method of three dimensional (3D) analysis ($MIMICS^{(R)}$, Materialise, Leuven, Belgium) is reported as very useful software for evaluation of OPLL, but its reliability and reproducibility are obscure. This study was conducted to evaluate the accuracy of $MIMICS^{(R)}$ system, and inter- and intra-observer reliability in the measurement of OPLL. Methods : Three neurosurgeons independently analyzed the randomly selected 10 OPLL cases with medical image processing software ($MIMICS^{(R)}$) which create 3D model with Digital Imaging and Communication in Medicine (DICOM) data from CT images after brief explanation was given to examiners before the image construction steps. To assess the reliability of inter- and intra-examiner intraclass correlation coefficient (ICC), 3 examiners measured 4 parameters (volume, length, width, and length) in 10 cases 2 times with 1-week interval. Results : The inter-examiner ICCs among 3 examiners were 0.996 (95% confidence interval [CI], 0.987-0.999) for volume measurement, 0.973 (95% CI, 0.907-0.978) for thickness, 0.969 (95% CI, 0.895-0.993) for width, and 0.995 (95% CI, 0.983-0.999) for length. The intra-examiner ICCs were 0.994 (range, 0.991-0.996) for volume, 0.996 (range, 0.944-0.998) for length, 0.930 (range, 0.873-0.947) for width, and 0.987 (range, 0.985-0.995) for length. Conclusion : The medical image processing software ($MIMICS^{(R)}$) provided detailed quantification OPLL volume with minimal error of inter- and intra-observer reliability in the measurement of OPLL.

A Study on Architecture of Real Time Image Processing System (실시간 영상처리 시스템 구성에 관한 연구)

  • 백남칠;우동민;김영일;최호현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.240-250
    • /
    • 1988
  • This pc-vision system digitizes/displays 512*512*8 bit pixel image in real time and is capable of the various image processing. This system provides a versatile solution to those users pursuing high performance image processing system compatible with the VME bus, and is general purpose imaging system giving the optimal efficiency for machine vision, medical use and various task. In this paper, Image processing technique has classified image enhancement and image analysis in order to design and implement the pc-vision system. In order to improve processing speed, This system unilizing ROI processing performs point operation, local operation and global operation as well as common arithmetic/logic operation in real time.

  • PDF

A Study on Body Image Satisfaction in Female Emergency Medical Technicians (여성 구급대원의 신체이미지 만족에 관한 연구)

  • Ra, Hyean-Sook;Park, Jeong-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3824-3831
    • /
    • 2013
  • The purpose of this study is to evaluate what baseline characteristic is most related with body image satisfaction and identify which items are the lowest score on body image and their related behaviors in female emergency medical technicians(EMTs). Female EMTs(n=96) working in the G provence completed a battery of questionnaires. Multiple logistic regression analysis showed that body image satisfaction was significantly associated with physical activity(p=.007, 95%CI: 2.937~19.180) in female EMTs. Subjects were most satisfied with their sex(male or female)(M=3.34, SD=0.72) and they were most dissatisfied with sleep(M=2.61, SD=0.85). The skin protective behavior showed significant difference according to skin concerns(p<.05).

Liver Tumor Detection Using Texture PCA of CT Images (CT영상의 텍스처 주성분 분석을 이용한 간종양 검출)

  • Sur, Hyung-Soo;Chong, Min-Young;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.601-606
    • /
    • 2006
  • The image data amount that used in medical institution with great development of medical technology is increasing rapidly. Therefore, people need automation method that use image processing description than macrography of doctors for analysis many medical image. In this paper. we propose that acquire texture information to using GLCM about liver area of abdomen CT image, and automatically detects liver tumor using PCA from this data. Method by one feature as intensity of existent liver humor detection was most but we changed into 4 principal component accumulation images using GLCM's texture information 8 feature. Experiment result, 4 principal component accumulation image's variance percentage is 89.9%. It was seen this compare with liver tumor detecting that use only intensity about 92%. This means that can detect liver tumor even if reduce from dimension of image data to 4 dimensions that is the half in 8 dimensions.

Objective and Quantitative Evaluation of Image Quality Using Fuzzy Integral: Phantom Study (퍼지적분을 이용한 영상품질의 객관적이고 정량적 평가: 팬톰 연구)

  • Kim, Sung-Hyun;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.201-208
    • /
    • 2008
  • Physical evaluations provide the basis for an objective and quantitative analysis of the image quality. Nonetheless, there are limitations in using physical evaluations to judge the utility of the image quality if the observer's subjectivity plays a key role despite its imprecise and variable nature. This study proposes a new method for objective and quantitative evaluation of image quality to compensate for the demerits of both physical and subjective image quality and combine the merits of them. The images of chest phantom were acquired from four digital radiography systems on clinic sites. The physical image quality was derived from an image analysis algorithm in terms of the contrast-to-noise ratio (CNR) of the low-contrast objects in three regions (lung, heart, and diaphragm) of a digital chest phantom radiograph. For image analysis, various image processing techniques were used such as segmentation, and registration, etc. The subjective image quality was assessed by the ability of the human observer to detect low-contrast objects. Fuzzy integral was used to integrate them. The findings of this study showed that the physical evaluation did not agree with the subjective evaluation. The system with the better performance in physical measurement showed the worse result in subjective evaluation compared to the other system. The proposed protocol is an integral evaluation method of image quality, which includes the properties of both physical and subjective measurement. It may be used as a useful tool in image evaluation of various modalities.

  • PDF

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Clinical Application of MRI in an Animal Bone Graft Model

  • Liu, Xiaochen;Jia, Wenxiao;Jin, Gele;Wang, Hong;Ma, Jingxu;Wang, Yunling;Yang, Yi;Deng, Wei
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2013
  • We aim to monitor vascularization of early bone perfusion following rabbit lumbar intertransverse bone graft fusion surgery using magnetic resonance imaging assessment. Correlation with graft survival status was evaluated by histological method. Experimental animals were randomly divided into three groups and the model was established by operating bilateral lumbar intertransverse bone graft with different types of bone graft substitute material. The lumbar intertransverse area of three groups of rabbits was scanned via MRI. In addition, histological examinations were performed at the $6^{th}$ week after surgery and the quantitative analysis of the osteogenesis in different grafted area was carried out by an image analysis system. The MRI technique can be used for early postoperative evaluation of vascularized bone graft perfusion after transplantation of different bone materials, whereas histological examination allows direct visualization of the osteogenesis process.