• Title/Summary/Keyword: Medical data mining

Search Result 203, Processing Time 0.024 seconds

Data Mining Model Analysis for The Risk Factor of Hypertension - By Medical Examination of Health Data -

  • Lee, Jea-Young;SaKong, Joon;Lee, Yong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.515-527
    • /
    • 2005
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. We utilized this data mining technique to analyze medical record of 39,900 people. Whole data were separated by gender first and divided into three groups, including normal, stage 1 hypertension, and stage 2 hypertension. The data from each group were analyzed with data mining technique. Based on the result that we have extracted with this data mining technique, major risk factors for the hypertension are age, BMI score, family history.

  • PDF

Data Mining Model Approach for The Risk Factor of BMI - By Medical Examination of Health Data -

  • Lee Jea-Young;Lee Yong-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.217-227
    • /
    • 2005
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. We utilized this data mining technique to analyze medical record of 35,671 people. Whole data were assorted by BMI score and divided into two groups. We tried to find out BMI risk factor from overweight group by analyzing the raw data with data mining approach. The result extracted by C5.0 decision tree method showed that important risk factors for BMI score are triglyceride, gender, age and HDL cholesterol. Odds ratio of major risk factors were calculated to show individual effect of each factors.

From The Discovery Challenge on Thrombosis Data

  • Takabayashi, Katsuhiko;Tsumoto, Shusaku
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.361-363
    • /
    • 2001
  • Although data mining promises a new paradigm to discover medical knowledge form a database, there are many problems to be solved before real application is feasible. We had the chance to provide a data set to be analyzed as a discovery challenge by using various data mining techniques at the PKDD conference. As data providers, we evaluated and discussed results and clarified problems.

  • PDF

Analysis of Internet User Features using Multi-dimensional Association Analysis (다차원 연관 분석을 이용한 인터넷 이용자의 특징 분석)

  • Lee, Su-Eun;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.1 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Data mining that can not be extracted with a simple query in the form of "useful" means to find information in large databases from the existing and unknown knowledge. It is based on this insight about the data can be defined as a gain. In this paper, we use the Internet to find useful patterns on the Web or saved data to the target Web site, which is to analyze the characteristics of users. A general statistical information on Internet users to the data by applying a relevance analysis, Internet use affect the amount of time to analyze the characteristics of Internet users. Only through experiments extracting data from the association rules, producing optimal results apply for the data pre-processing and algorithm for mining the Web to Internet users. characteristics were analyzed.

  • PDF

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Effective eCRM using prediction function of Data Mining (Data Mining의 예측기능을 이용한 효과적인 eCRM)

  • Kang Rae-Goo;Kim Seung-Eon;Jung Chai-Yeoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1039-1042
    • /
    • 2006
  • Because many corporations computerize process figure enemy who is introducing eCRM fast and are used mainly at past by purpose to detect and analyze and forecast systematic analysis of customer information and various pattern of customer recently, ordinary peoples are trend that is alternated gradually by data mining that can drawand forecast result of good quality easily. Field that this data mining is used representatively is eCRM. In this treatise customer data of A discount store and sale data of 1 years experimenting that forecast customer contribution to base next year through data mining actuality data and data mining through comparison with predicted data are how effective to eCRM prove.

  • PDF

Analysis of Dental Hygienist Job Recognition Using Text Mining

  • Kim, Bo-Ra;Ahn, Eunsuk;Hwang, Soo-Jeong;Jeong, Soon-Jeong;Kim, Sun-Mi;Han, Ji-Hyoung
    • Journal of dental hygiene science
    • /
    • v.21 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Background: The aim of this study was to analyze the public demand for information about the job of dental hygienists by mining text data collected from the online Q & A section on an Internet portal site. Methods: Text data were collected from inquiries that were posted on the Naver Q & A section from January 2003 to July 2020 using "dental hygienist job recognition," "role recognition," "medical assistance," and "scaling" as search keywords. Text mining techniques were used to identify significant Korean words and their frequency of occurrence. In addition, the association between words was analyzed. Results: A total of 10,753 Korean words related to the job of dental hygienists were extracted from the text data. "Chi-lyo (treatment)," "chigwa (dental clinic)," "ske-illing (scaling)," "itmom (gum)," and "chia (tooth)" were the five most frequently used words. The words were classified into the following areas of job of the dental hygienist: periodontal disease treatment and prevention, medical assistance, patient care and consultation, and others. Among these areas, the number of words related to medical assistance was the largest, with sixty-six association rules found between the words, and "chi-lyo," "chigwa," and "ske-illing" as core words. Conclusion: The public demand for information about the job of dental hygienists was mainly related to "chi-lyo," "chigwa," and "ske-illing" as core words, demonstrating that scaling is recognized by the public as the job of a dental hygienist. However, the high demand for information related to treatment and medical assistance in the context of dental hygienists indicates that the job of dental hygienists is recognized by the public as being more focused on medical assistance than preventive dental care that are provided with job autonomy.

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

  • Tang, Tzung-I;Zheng, Gang;Huang, Yalou;Shu, Guangfu;Wang, Pengtao
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2005
  • This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.

Convergence outpatient medical service patient experience research using data mining (데이터마이닝 기법을 이용한 융복합 외래 의료서비스 환자경험조사 연구)

  • Yoo, Jin-Yeong
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.299-306
    • /
    • 2020
  • The purpose of this study is to find out specific measures that can help the management strategy of patient-centered medical institutions by conducting research on patient experience surveys of convergence outpatient medical services using data mining techniques according to changes in patient-centered medical culture. Using the raw data of the 2018 Medical Service Experience Survey, 8,843 people over the age of 15 who had patient experience in outpatient medical services were analyzed. Decision tree analysis was performed. The determinants of satisfaction with outpatient medical services patient experience were the doctor's area and patient's rights protection area, and the determinants of intention to recommend outpatient medical services were the doctor's area and facilities comfort. Women evaluated the experience positively in overall satisfaction as compared to men, and those over the age of 60 positively evaluated the overall satisfaction and intention to recommend. It is significant that the outpatient experience decision-making model is presented, and that the doctor's area, patient's rights protection area, and facility comfort are important factors. Long-term research on the 'Medical Service Experience Survey' is needed, and research on the inpatient medical service experience is needed.

The Study of Chronic Kidney Disease Classification using KHANES data (국민건강영양조사 자료를 이용한 만성신장질환 분류기법 연구)

  • Lee, Hong-Ki;Myoung, Sungmin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.271-272
    • /
    • 2020
  • Data mining is known useful in medical area when no availability of evidence favoring a particular treatment option is found. Huge volume of structured/unstructured data is collected by the healthcare field in order to find unknown information or knowledge for effective diagnosis and clinical decision making. The data of 5,179 records considered for analysis has been collected from Korean National Health and Nutrition Examination Survey(KHANES) during 2-years. Data splitting, referred as the training and test sets, was applied to predict to fit the model. We analyzed to predict chronic kidney disease (CKD) using data mining method such as naive Bayes, logistic regression, CART and artificial neural network(ANN). This result present to select significant features and data mining techniques for the lifestyle factors related CKD.

  • PDF