• 제목/요약/키워드: Medical Sensor Networks

검색결과 77건 처리시간 0.031초

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.

의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구 (Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks)

  • 서재원;김미희;채기준
    • 정보처리학회논문지C
    • /
    • 제16C권3호
    • /
    • pp.285-298
    • /
    • 2009
  • 유비쿼터스 기술의 발전과 함께 센서 네트워크는 다양한 분야에서 활용되고 있다. 그 중 특히 의료 분야는 중요한 응용 분야 중의 하나로 바디 센서 네트워크의 표준화 동향과 함께 관심이 집중되고 있다. 의료 센서 네트워크는 기존의 일반적인 환경의 센서 네트워크와는 다른 의료 환경만의 특징들을 가지고 있다. 따라서 본 논문에서는 이와 같은 특징들을 반영하여 계층적인 의료 센서 네트워크 구조를 제안하였고, 계층적인 구조를 바탕으로 하여 센싱 데이터 전송 방식을 소개하였다. 즉, 효율적인 센싱 데이터 전송을 위해서는 환자들의 요구 사항과 건강 상태를 고려하여 각 센서 노드들에게 우선 순위(Priority)와 경계값(Threshold Value)을 주었다. 이를 통해 클러스터 헤드에서 응급 데이터를 우선적으로 빠르게 베이스스테이션으로 전송하도록 하였다. 또한 이와 같은 구조와 전송 방식을 바탕으로 센서 네트워크를 위해 Eschenauer와 Gligor가 제안한 키 메커니즘을 기반으로 하여 새로운 키 관리 기법을 제안하였다. 이는 각 클러스터 헤드들이 높은 우선 순위를 갖는 응급 노드들에 대해서 이웃 클러스터로 응급 노드와의 키를 미리 전송해주는 Key Provisioning 방법을 사용하여 응급 노드들에 대해서 키 설립을 준비하도록 하여 키 설립이 보다 빠르게 이루어지도록 하였다. 이를 통해 키 설립 지연으로 인한 데이터 전송의 기다림 없이 바로 응급 노드들의 데이터를 클러스터 헤드로 전송할 수 있도록 한다. 이와 같은 계층적인 구조에서의 데이터 전송 방식과 이를 바탕으로 제안한 키 관리 기법은 수식 및 QualNet 시뮬레이터를 사용한 시뮬레이션을 통하여 네트워크 트래픽 오버헤드와 에너지 소모량을 분석하였으며, TmoteSKY 센서보드를 사용해 구현함으로써 그 효율성을 증명하고 실제 응용환경에서의 실현가능성을 입증하였다.

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • 제13권2호
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

An Energy-Efficient Mobility-Supporting MAC Protocol in Wireless Sensor Networks

  • Peng, Fei;Cui, Meng
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.203-209
    • /
    • 2015
  • Although mobile applications are an essential characteristic of wireless sensor networks, most existing media access control (MAC) protocols focus primarily on static networks. In these protocols, fixed periodic neighbor discovery and schedule updating are used to connect and synchronize neighbors to provide successful data transmission; however, they cannot adapt to mobile speed variation and degrade the network performance dramatically. In this paper, we propose a mobile-supporting mechanism for MAC protocols, in which the decision to update the neighbors of a mobile node is made adaptively according to the mobile speed. Analysis and simulation results demonstrate that the mechanism efficiently avoids the disconnection of amobile node from its neighbors and achieves a better performance as compared with fixed periodic neighbor discovery.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

무선 센서 네트워크에서 중복 메세지 순신 회피를 통한 에너지 소비절감 매체 접근 제어 (A Medium Access Control Scheme for Reducing Energy Consumption through Avoiding Receipt of Redundant Messages in Wireless Sensor Networks)

  • 한정안;이문호
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.13-24
    • /
    • 2005
  • The sensor network is a key component of the ubiquitous computing system which is expected to be widely utilized in logistics control, environment/disaster control, medical/health-care services, digital home and other applications. Nodes in the sensor network are small-sized and exposed to adverse environments. They are demanded to perform their missions with very limited power supply only. Also the sensor network is composed of much more nodes than the wireless ad hoc networks are. In case that some nodes consume up their power capacity, the network topology should change, and rerouting/retransmission is necessitated. Communication protocols studied for conventional wireless networks or ad hoc networks are not suited for the sensor network resultantly. Schemes should be devised to control the efficient usage of node power in the sensor network. This paper proposes a medium access protocol to enhance the efficiency of energy consumption in the sensor network node. Its performance is analyzed by simulation.

  • PDF

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • 제7권4호
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

Multi-Agent System for Fault Tolerance in Wireless Sensor Networks

  • Lee, HwaMin;Min, Se Dong;Choi, Min-Hyung;Lee, DaeWon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1321-1332
    • /
    • 2016
  • Wireless sensor networks (WSN) are self-organized networks that typically consist of thousands of low-cost, low-powered sensor nodes. The reliability and availability of WSNs can be affected by faults, including those from radio interference, battery exhaustion, hardware and software failures, communication link errors, malicious attacks, and so on. Thus, we propose a novel multi-agent fault tolerant system for wireless sensor networks. Since a major requirement of WSNs is to reduce energy consumption, we use multi-agent and mobile agent configurations to manage WSNs that provide energy-efficient services. Mobile agent architecture have inherent advantages in that they provide energy awareness, scalability, reliability, and extensibility. Our multi-agent system consists of a resource manager, a fault tolerance manager and a load balancing manager, and we also propose fault-tolerant protocols that use multi-agent and mobile agent setups.

RFID를 이용한 헬스시스템에서의 정보보안 향상을 인증 메카니즘 분석 (Analyses of Enhancement of Authentication Mechanism for Security and Privacy Under Healthcare System With RFID Application)

  • 김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.154-156
    • /
    • 2012
  • This paper presents a user authentication scheme for healthcare application using wireless medical sensor networks, where wireless medical sensors are used for patients monitoring. These medical sensors' sense the patient body data and transmit it to the professionals (e.g., doctors, nurses, and surgeons). Since, the data of an individual are highly vulnerable; it must ensures that patients medical vital signs are secure, and are not exposed to an unauthorized person. In this regards, we have proposed a user1 authentication scheme for healthcare application using medical sensor networks. The proposed scheme includes: a novel two-factor professionals authentication (user authentication), where the healthcare professionals are authenticated before access the patient's body data; a secure session key is establish between the patient sensor node and the professional at the end of user authentication. Furthermore, the analysis shows that the proposed scheme is safeguard to various practical attacks and achieves efficiency at low computation cost.

  • PDF

HL7과 IEEE 1451 기반 센서 네트워크와의 연동에 관한 연구 (A Study on the Interoperability between the HL7 and the IEEE 1451 based Sensor Network)

  • 김우식;임수영;안진수;나지영;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권6호
    • /
    • pp.457-465
    • /
    • 2008
  • HL7(Health Level 7) is a standard for exchanging medical and healthcare data among different medical information systems. As the ubiquitous era is coming, in addition to text and imaging information, a new type of data, i.e., streaming sensor data appear. Since the HL7 is not covering the interfaces among the devices that produces sensor data, it is expected that sooner or later the HL7 needs to include the biomedical sensors and sensor networks. The IEEE 1451 is a family of standards that deals with the sensors, transducers including sensors and actuators, and various wired or wireless sensor networks. In this paper, we consider the possibility of interoperability between the IEEE 1451 and HL7. After we propose a format of messages in HL7 to include the IEEE 1451 TEDS, we present some preliminary results that show the possibility of integrating the two standards.