• Title/Summary/Keyword: Medical Sensor Network

Search Result 171, Processing Time 0.024 seconds

A Study on USN Management System Based on SIP-HL7 for Ubiquitous Healthcare Service (유비쿼터스 헬스케어 서비스를 위한 SIP-HL7 기반의 USN 관리 시스템에 관한 연구)

  • Lee, Jun-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.292-305
    • /
    • 2013
  • EPCglobal has proposed the EPC Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPCglobal Network. However, it can not deal with the sensor data without EPS. Also, it does not provide enough management function for the sensor data only. This study proposes USN management system that can deal with these weaknesses of EPC Sensor Network. Not only that, it is suitable for the medical environment properly. In the medical environment, it is important for the medical information to be integrated and interconnected via the standard for medical data. This proposed USN management system is based on SIP-HL 7 and can send RFID and WSN data based on SIP(Session Initiation Protocol). It can be interconnected with the existing hospital information system and exchange the information. Also it can design and materialize SIP Interface based on HL7 that allows the medical information to be exchanged and sent.

Channel Selection Method of Wireless Sensor Network Nodes for avoiding Interference in 2.4Ghz ISM(Industrial, Scientific, Medical) Band (2.4Ghz ISM(Industrial Scientific Medical) 밴드에서 간섭을 회피하기 위한 무선 센서 노드의 채널 선택 방법)

  • Kim, Su Min;Kuem, Dong Hyun;Kim, Kyung Hoon;Oh, Il;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • In recent, ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart phone, notebook computer, printer and portable multimedia devices. Accordingly, studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi device using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band causes serious network performance deterioration of wireless sensor networks. This paper examined a method of identifying channel status to avoid interference among wireless communication devices using IEEE 802.11b (Wi-Fi) and other ISM bands during communication among IEEE 802.15.4 based wireless sensor network nodes in ISM band. To identify channels occupied by Wi-Fi traffic, various studies are being conducted that use the RSSI (Received Signal Strength Indicator) value of interference signal obtained through ED (Energy Detection) feature that is one of IEEE 802.15.4 transmitter characteristics. This paper examines an algorithm that identifies the possibility of using more accurate channel by mixing utilization of interference signal and RSSI mean value of interference signal by wireless sensor network nodes. In addition, it verifies such algorithm by using OPNET Network verification simulator.

Privacy and Security Model for RFID Healthcare System in Wireless Sensor Network (무선센서네트워크 환경하에서 RFID 헬스 시스템을 위한 보안)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.439-441
    • /
    • 2012
  • The use of a mobile agent in hospital environment offers an opportunity to deliver better services for patients and staffs. Furthermore, medical errors will be reduced because M-health system helps to verify the medical process. Optimized security protocols and mechanisms are employed for the high performance and security. Finally, a challenge in the near future will be converge the integration of Ubiquitous Sensor Network (USN) with security protocols for applying the hospital environment. We proposed secure authentication and protocol with Mobile Agent for ubiquitous sensor network under healthcare system surroundings.

  • PDF

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

Software Platform for Stability Assure of Sensor Network in u-Health Environment (유헬스 환경에서 센서네트워크의 안정성 보장을 위한 소프트웨어 플랫폼)

  • Jung, Min Woo;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.219-226
    • /
    • 2012
  • The rises of the life index quality together with the medical technology improvement lead to a longer life expectancy. Then a better health care program, especially for elderly, is needed. The common health problems facing those senior citizens are changed from acute diseases to chronic diseases, such as diabetes, hypertension. Then u-Health takes center stage in medical industry. Although u- Health medical device manufacturers have been improving their instruments, these instruments still rely on proprietary technologies without fixed platform. Even if the interface has been provided by the manufacturer, there is no widely-accepted uniform data model to access data of various u-Health devices. IEEE 11073 is a standard attempting to unify the interfaces of all medical devices. In this paper we have proposed a conversion software platform that assures interoperability among medical devices for ubiquitous sensor network. This module uses in order to develop a standard platform of medical system.

Mobile u-healthcare system in IEEE 802.15.4 WSN and CDMA network environments

  • Toh, Sing-Hui;Lee, Seung-Chul;Lee, Hoon-Jae;Do, Kyeong-Hoon;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.337-342
    • /
    • 2009
  • This paper describes a robust mobile u-healthcare system with multiple physiological signs measurement capability in real time with integration of WSN(wireless sensor network) technology and CDMA(code division multiple access) network. A cellular phone receives health data in WSN and performs local physiological signs analysis at a phone processor, and then transmits abnormal data to server for further detail or precise health signal evaluation by a medical doctor over a CDMA network. Physiological signs of the patients are continuously monitored, processed and analyzed locally at cellular phone process to produce useful medical information for diagnosis and tracking purposes. By local simple analysis in cellular phone processor we can save the data transmission cost in CDMA network. By using the developed integrate ubiquitous healthcare service architecture, patients can realize self-health checking so that the prevention actions can be taken earlier. Appropriate self-monitoring and self-management can cure disease and relieve pain especially for patients who suffer from chronic diseases that need long term observation.

A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 1. the construction of sensor network platform (유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 1. 센서 네트워크 플랫폼 구축)

  • Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.362-370
    • /
    • 2006
  • The wireless sensor network (WSN) based ECG and body temperature measuring system for ubiquitous health-care were designed and developed. The system was composed of a wireless sensor network node, base station and server computer for the continuous monitoring of ECG signals and body temperatures of patients at home or hospital. ECG signal and body temperature data, important vital signals which are commonly used in clinical and trauma care, were displayed on a graphical user interface (GUI). The data transfer from sensor nodes on patients' body to server computer was accomplished through a base-station connected to a server computer using Zigbee compatible IEEE802.15.4 standard wireless communication. Real-time as well as historical, ECG data of elderly persons or patients, can also be retrieved and played back to assist the diagnosis. The ubiquitous health care system presented in this study can effectively reduce social medical expenses, which will be increased greatly in the coming aging society.

Alternative tactile sensor for measuring rehabilitation study using to neural network (신경망을 적용한 재활훈련 측정용 대체 촉각 센서 연구)

  • Lim, Seung-Cheol;Jin, Go-Whan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.23-29
    • /
    • 2012
  • Injured peoples usually care their body at medical institutions. But if they need some more rehabilitation to the affected area thus exist. These medical institutions according to the scale there are significant differences in rehabilitation programs, most of the small-scale rehabilitation program for medical doctors and patients to be progression of the conversation is an issue. In this paper, in a small medical facility rehabilitation to assist in the accuracy and reliability, physical contact and force sensors that can measure a combination of substitution and the tactile sensor and tactile sensor alternative with a similar function is proposed. Perceptron neural networks by applying the contact evaluation according to the algorithm to determine the pattern is applied.

Design and Implementation of an Real-time Bio-signals Monitoring System Using ZigBee and SIP (ZigBee와 SIP를 이용한 실시간 생체 신호 모니터링 시스템의 설계 및 구현)

  • Kim, Young-Joon;Jung, In-Gyo;Yang, Yong-Ho;Kim, Bo-Nam;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • In this paper, we proposed the real-time bio-signals monitoring system that is based on the ZigBee wireless sensor network and SIP. This system makes medical team and user easily confirm user's medical state irrelative to their location and time. The communication between medical sensors and the user's end device uses the ZigBee wireless sensor network. The power consumption was decreased because wireless sensor network does not use the Ad-hoc routing protocol but routing protocol that is based on tree structure. Our proposed system includes a wireless user's end device, monitoring console, SIP server and database server. This real-time bio-signals monitoring system makes possible to implement the U-health care services and improving efficiency of medical treatment services.

Study of U-medical treatment administration service Construction Model of Sensor Network base (센서네트워크 기반의 U-의료행정서비스 구축 모델에 관한 연구)

  • Shin, Yoon-Ho;Lee, June-Hwan;Shin, Ye-Ho
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Sensor network in Ubiquitous age that change fast made paper about U- health medical treatment administrative service construction model as a technology that attach electron tag (RFID) and procures information by real time because detects surrounding environment information to basis and uses realization information of things through this to all necessary things. Prognostication that thorough administration about contagiousness carrier with side effect of possession Asia's vaccination and AISD that often occur is difficult utilizes RFID chip aiming and did by purpose constructing more better health medical treatment administrative service.

  • PDF