• Title/Summary/Keyword: Medical Physicists

Search Result 38, Processing Time 0.03 seconds

Object-Oriented Stereotactic Radiosurgery Planning System (객체 지향 개념을 이용한 뇌정위 방사선 수술 계획 시스템)

  • Park, S.H.;Suh, T.S.;Suh, D.Y.;Kang, W.S.;Ha, S.H.;Kim, I.H.;Park, C.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.85-87
    • /
    • 1994
  • In this paper, we present an object-oriented stereotactic radiosurgery planning system, which accepts medical images such as CT and angiography, transforms the coordinates to a reference frame coordinate, calculates dose distributions, and finally displays isodose curves over the images. The user finds an adequate one for radiosurgeries after performing computer simulations on different treatment parameter sets. The object-oriented design concept was fully applied to the system composed of seven manager objects of different classes: a patient information manager, a user-interface manager, a coordinate transformation manager, a blackboard manager, a dose calculation manager, an isodose curve display manager, and a report manager. All the user interactions are carried out through the use of mouse buttons. The performance of the system was verified by four physicians and two medical physicists, and now is being used in two clinical sites.

  • PDF

QUALITY ASSURANCE IMPLEMENTATION IN THE NATIONAL CANCER CENTRE

  • Jui, Wong-Toh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.19-22
    • /
    • 2002
  • The importance of accurate dose delivery in radiotherapy is well documented. Studies have shown that a mere 5% deviation of the prescribed dose can produce an undesirable treatment outcome. Uncertainties in the dose delivery can arise at different stages of the radiotherapy process. Therefore, a good quality assurance programme will ensure the best possible results and consistency of the radiotherapeutic treatment. Quality assurance in any radiotherapy department involves the responsibility of a multi-disciplinary team of radiation oncologists, medical physicists and radiation technologists. This paper will focus on the physical and technical aspects of QA. The organizational structure and responsibility of the physics QA team is outlined and also included the types and frequencies of QA checks. For a QA program to be effective, action levels should be clearly defined and understood by all staff concerned. Data of the Singapore National Cancer Centre's participation over the last ten years with the IAEA / WHO Postal TLD Dose Inter-comparison programme is presented. The data obtained were within the international criteria. For a QA program to be successfully implemented, there must be a commitment by management to provide adequate staff, test equipment, machine time as well as continual training and education. This is in addition to the positive attitudes of all the staff. A quality audit is also necessary to serve as a check and balance to ensure that the QA is in order.

  • PDF

Recent Developments in Nuclear Medicine Instrumentation (최근 핵의학 영상 기기 발전 동향)

  • Kim, Joon-Young;Choi, Yong;Kim, Jong-Ho;Im, Ki-Chun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Sang-Eun;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.471-481
    • /
    • 1998
  • The goals of developments in nuclear medicine instrumentation are to offer a higher-quality image and to aid diagnosis, prognosis assessment or treatment planning and monitoring. It is necessary for physicists and engineers to improve or design new instrumentation and techniques, and to implement, validate, and apply these new approaches in the practice of nuclear medicine. The researches in physical properties of detectors and crystal materials and advances in image analysis technology have improved quantitative and diagnostic accuracy of nuclear medicine images. This review article presents recent developments in nuclear medicine instrumentation, including scatter and attenuation correction, new detector technology, tomographic image reconstruction methods, 511 keV imaging, dual modality imaging device, small gamma camera, PET developments, image display and analysis methods.

  • PDF

Nanobiotechnology (나노바이오 테크놀로지)

  • Park, Hyun Kyu;Chung, Bong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.10-15
    • /
    • 2006
  • Nanobiotechnology has attracted increasing interest during the last 10 years. Particularly in the fields of medicine, drug discovery, and pharmacology, this area of research has opened up new perspectives in analytics and therapy. Nanobiotechnolgy is a typical interdisciplinary field of research, and is based on the cooperative work of biologists, chemists, physicists, engineers, and medical doctors. This review article describes recent research and development of nanobiotechnology including nanobioanalysis, nanobiochip/sensor and nanobiomaterials.

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea (국내 선형가속기의 포괄적인 품질관리체계에 대한 제언)

  • Choi, Sang Hyoun;Park, Dong-wook;Kim, Kum Bae;Kim, Dong Wook;Lee, Jaiki;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • 지영훈;이동한;류성렬;권수일;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.45-57
    • /
    • 1997
  • It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine, European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induces the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. For measuring the absorbed doses and the dose distribution of fast neutron beam, we used IC-17 and IC-18 ion chambers manufactured by A-150 plastic(tissue-equivalent material), IC-17M ion chamber manufactured by magnesium, TE gas and Ar gas, and RDM 2A electrometer. The magnitude of gamma-contamination intermingled with fast neutron beam was about 13% at 5cm depth of standard irradiated field, and increased as the depth was increased. At the central axis the maximum dose depth and 50% dose depth were 1.32cm and 14.8cm, respectively. The surface dose rate was 41.6-54.1% throughout the entire irradiated fields and increased as the irradiated fields were increased. Beam profile was that the horn effect of about 7.5% appeared at 2.5cm depth and the flattest at 10cm depth.

  • PDF

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

New methods for optical distance indicator and gantry angle quality control tests in medical linear accelerators: image processing by using a 3D phantom

  • Shandiz, Mahdi Heravian;Layen, Ghorban Safaeian;Anvari, Kazem;Khalilzadeh, Mohammadmahdi
    • Radiation Oncology Journal
    • /
    • v.33 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • Purpose: In order to keep the acceptable level of the radiation oncology linear accelerators, it is necessary to apply a reliable quality assurance (QA) program. Materials and Methods: The QA protocols, published by authoritative organizations, such as the American Association of Physicists in Medicine (AAPM), determine the quality control (QC) tests which should be performed on the medical linear accelerators and the threshold levels for each test. The purpose of this study is to increase the accuracy and precision of the selected QC tests in order to increase the quality of treatment and also increase the speed of the tests to convince the crowded centers to start a reliable QA program. A new method has been developed for two of the QC tests; optical distance indicator (ODI) QC test as a daily test and gantry angle QC test as a monthly test. This method uses an image processing approach utilizing the snapshots taken by the CCD camera to measure the source to surface distance (SSD) and gantry angle. Results: The new method of ODI QC test has an accuracy of 99.95% with a standard deviation of 0.061 cm and the new method for gantry angle QC has a precision of $0.43^{\circ}$. The automated proposed method which is used for both ODI and gantry angle QC tests, contains highly accurate and precise results which are objective and the human-caused errors have no effect on the results. Conclusion: The results show that they are in the acceptable range for both of the QC tests, according to AAPM task group 142.