• Title/Summary/Keyword: Medical Image Segmentation

Search Result 247, Processing Time 0.026 seconds

Effective Object Recognition based on Physical Theory in Medical Image Processing (의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2012
  • In medical image processing field, object recognition is usually processed based on region segmentation algorithm. Region segmentation in the computing field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective region segmentation method based on R2-map information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2-map as seed points for 2D region growing and final boundary correction to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5%, which was higher than the accuracy of conventional exist region segmentation algorithm, was obtained.

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

A Study on an Image Processing for Segmentation of Liver Arteriography Using Medical Image(MDCT) (의료명상(MDCT)을 이용한 간 동맥의 영역 분할에 관한 영상처리)

  • Choi Seung-Kwon;Cho Yong-Hwan;Lee Byong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.305-305
    • /
    • 2005
  • In modern society, diseases are variously found. Also, disease can be fatal once starting attack or one misses the proper medical examination time. According to the development of society, our liver settled on exhausted status which causes high disease development ratio because of excess business, smoking and drinking. Especially liver related disease cannot be recovered, therefore it depends on internal organ transplant surgery. In this paper, calculate volume from rendered liver shape using 3-dimensional image processing method and we develop an image processing method for the image acquired by MDCT, that can simulate incision line decision according to blood vessel segmentation that can be used on liver transplant operation. Simulation results which adopt automatic liver segment abstraction algorithm show that it can help surgical operation.

Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image (척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식)

  • 홍재성;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.233-242
    • /
    • 1998
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray ultrasonic and CT images. This paper introduces a method that recognizes disk diseases from spine MR images. In this method, image enhancement, image segmentation and feature extraction for sagittal plane and axial plane images are performed to separate the disk region. And then template matching method is used to extract disease region for axial plane imges. Finally, disease feature vectors are integrated and disease discrimination processes are performed. Experimental results show that the proposed method discriminates between normal and diseased disk with a considerable recognition ratio.

  • PDF

Study on an Image Reconstruction Algorithm for 3D Cartilage OCT Images (A Preliminary Study) (3차원 연골 광간섭 단층촬영 이미지들에 대한 영상 재구성 알고리듬 연구)

  • Ho, Dong-Su;Kim, Ee-Hwa;Kim, Yong-Min;Kim, Beop-Min
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.62-71
    • /
    • 2009
  • Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the noninvasive assessment of biological tissues. However, OCT images difficult to analyze due to speckle noise. In this paper, we tested various image processing techniques for speckle removal of human and rabbit cartilage OCT images. Also, we distinguished the images which get with methods of image segmentation for OCT images, and found the most suitable method for segmenting an image. And, we selected image segmentation suitable for OCT before image reconstruction. OCT was a weak point to system design and image processing. It was a limit owing to measure small a distance and depth size. So, good edge matching algorithms are important for image reconstruction. This paper presents such an algorithm, the chamfer matching algorithm. It is made of background for 3D image reconstruction. The purpose of this paper is to describe good image processing techniques for speckle removal, image segmentation, and the 3D reconstruction of cartilage OCT images.

  • PDF

A Study on Residual U-Net for Semantic Segmentation based on Deep Learning (딥러닝 기반의 Semantic Segmentation을 위한 Residual U-Net에 관한 연구)

  • Shin, Seokyong;Lee, SangHun;Han, HyunHo
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.251-258
    • /
    • 2021
  • In this paper, we proposed an encoder-decoder model utilizing residual learning to improve the accuracy of the U-Net-based semantic segmentation method. U-Net is a deep learning-based semantic segmentation method and is mainly used in applications such as autonomous vehicles and medical image analysis. The conventional U-Net occurs loss in feature compression process due to the shallow structure of the encoder. The loss of features causes a lack of context information necessary for classifying objects and has a problem of reducing segmentation accuracy. To improve this, The proposed method efficiently extracted context information through an encoder using residual learning, which is effective in preventing feature loss and gradient vanishing problems in the conventional U-Net. Furthermore, we reduced down-sampling operations in the encoder to reduce the loss of spatial information included in the feature maps. The proposed method showed an improved segmentation result of about 12% compared to the conventional U-Net in the Cityscapes dataset experiment.