• Title/Summary/Keyword: Medical Image Segmentation

Search Result 247, Processing Time 0.027 seconds

Development of the Multi-Parametric Mapping Software Based on Functional Maps to Determine the Clinical Target Volumes (임상표적체적 결정을 위한 기능 영상 기반 생물학적 인자 맵핑 소프트웨어 개발)

  • Park, Ji-Yeon;Jung, Won-Gyun;Lee, Jeong-Woo;Lee, Kyoung-Nam;Ahn, Kook-Jin;Hong, Se-Mie;Juh, Ra-Hyeong;Choe, Bo-Young;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.153-164
    • /
    • 2010
  • To determine the clinical target volumes considering vascularity and cellularity of tumors, the software was developed for mapping of the analyzed biological clinical target volumes on anatomical images using regional cerebral blood volume (rCBV) maps and apparent diffusion coefficient (ADC) maps. The program provides the functions for integrated registrations using mutual information, affine transform and non-rigid registration. The registration accuracy is evaluated by the calculation of the overlapped ratio of segmented bone regions and average distance difference of contours between reference and registered images. The performance of the developed software was tested using multimodal images of a patient who has the residual tumor of high grade gliomas. Registration accuracy of about 74% and average 2.3 mm distance difference were calculated by the evaluation method of bone segmentation and contour extraction. The registration accuracy can be improved as higher as 4% by the manual adjustment functions. Advanced MR images are analyzed using color maps for rCBV maps and quantitative calculation based on region of interest (ROI) for ADC maps. Then, multi-parameters on the same voxels are plotted on plane and constitute the multi-functional parametric maps of which x and y axis representing rCBV and ADC values. According to the distributions of functional parameters, tumor regions showing the higher vascularity and cellularity are categorized according to the criteria corresponding malignant gliomas. Determined volumes reflecting pathological and physiological characteristics of tumors are marked on anatomical images. By applying the multi-functional images, errors arising from using one type of image would be reduced and local regions representing higher probability as tumor cells would be determined for radiation treatment plan. Biological tumor characteristics can be expressed using image registration and multi-functional parametric maps in the developed software. The software can be considered to delineate clinical target volumes using advanced MR images with anatomical images.

An Iterative Spot Matching for 2-Dimensional Protein Separation Images (반복 점진적 방법에 의한 2차원 단백질 분리 영상의 반점 정합)

  • Kim, Jung-Ja;Hoang, Minh T.;Kim, Dong-Wook;Kim, Nam-Gyun;Won, Yong-Gwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.601-608
    • /
    • 2007
  • 2 Dimensional Gel Electrophoresis(2DGE) is an essentialmethodology for analysis on the expression of various proteins. For example, information for the location, mass, expression, size and shape of the proteins obtained by 2DGE can be used for diagnosis, prognosis and biological progress by comparison of patients with the normal persons. Protein spot matching for this purpose is comparative analysis of protein expression pattern for the 2DGE images generated under different conditions. However, visual analysis of protein spots which are more than several hundreds included in a 2DGE image requires long time and heavy effort. Furthermore, geometrical distortion makes the spot matching for the same protein harder. In this paper, an iterative algorithm is introduced for more efficient spot matching. Proposed method is first performing global matching step, which reduces the geometrical difference between the landmarks and the spot to be matched. Thus, movement for a spot is defined by a weighted sum of the movement of the landmark spots. Weight for the summation is defined by the inverse of the distance from the spots to the landmarks. This movement is iteratively performed until the total sum of the difference between the corresponding landmarks is larger than a pre-selected value. Due to local distortion generally occurred in 2DGE images, there are many regions in whichmany spot pairs are miss-matched. In the second stage, the same spot matching algorithm is applied to such local regions with the additional landmarks for those regions. In other words, the same method is applied with the expanded landmark set to which additional landmarks are added. Our proposed algorithm for spot matching empirically proved reliable analysis of protein separation image by producing higher accuracy.

Evaluation of Hippocampal Volume Based on Various Inversion Time in Normal Adults by Manual Tracing and Automated Segmentation Methods

  • Kim, Ju Ho;Choi, Dae Seob;Kim, Seong-hu;Shin, Hwa Seon;Seo, Hyemin;Choi, Ho Cheol;Son, Seungnam;Tae, Woo Suk;Kim, Sam Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2015
  • Purpose: To investigate the value of image post-processing software (FreeSurfer, IBASPM [individual brain atlases using statistical parametric mapping software]) and inversion time (TI) in volumetric analyses of the hippocampus and to identify differences in comparison with manual tracing. Materials and Methods: Brain images from 12 normal adults were acquired using magnetization prepared rapid acquisition gradient echo (MPRAGE) with a slice thickness of 1.3 mm and TI of 800, 900, 1000, and 1100 ms. Hippocampal volumes were measured using FreeSurfer, IBASPM and manual tracing. Statistical differences were examined using correlation analyses accounting for spatial interpretations percent volume overlap and percent volume difference. Results: FreeSurfer revealed a maximum percent volume overlap and maximum percent volume difference at TI = 800 ms ($77.1{\pm}2.9%$) and TI = 1100 ms ($13.1{\pm}2.1%$), respectively. The respective values for IBASPM were TI = 1100 ms ($55.3{\pm}9.1%$) and TI = 800 ms ($43.1{\pm}10.7%$). FreeSurfer presented a higher correlation than IBASPM but it was not statistically significant. Conclusion: FreeSurfer performed better in volumetric determination than IBASPM. Given the subjective nature of manual tracing, automated image acquisition and analysis image is accurate and preferable.

Image Discriminal Analysis for Detecting a Esophagitis (식도염 진단을 위한 영상 판별분석)

  • Seo K. W.;Lee C. W.;Kim W.;Lee S. Y.;Lee D. W.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.545-550
    • /
    • 2004
  • An Image processing algorithm was developed and tested to detect abnormal parts, such as esophagitis, with the information on the color and the texture in a digital clinic endoscopic image by using discriminal analysis. In order to develope the algorithm, the critical parameters from many parameters were found to distinguish between normal and abnormal part in the various images. The Inflammation and ulceration which are very important diagnostic indexes were detected by the algorithm. The algorithm proved to a reliable program for detecting abnormal parts with 20 images. A success rate was 92.8% and 92.4% in the calibration stage and the validation stage by using the algorithm with discriminal analysis.

A Study on Modified Switching Filter Using Region Segmentation (영역 분할을 이용한 변형된 스위칭 필터에 관한 연구)

  • Kwon, Se-ik;Kim, Nam-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1284-1289
    • /
    • 2016
  • Recently, digital image processing is applied a lot to the broadcasting, communication, computer graphic, and medical sectors. It generates noise when data is transmitted. There are many kinds of noises that add to the image such as salt and pepper noise, AWGN, and complex noise. Thus, this study divides the corrupted image into four4 areas and estimates the types of noises each pixel, and this study suggested a switching filter that separates the estimated into salt and pepper noise and AWGN. In the case that center pixel of local mask is corrupted by salt and pepper noise, it used a histogram probability weighting of subdivided area. Also, in case that it is corrupted by AWGN, algorithm that is applied to with different weights given for the distribution of each area with using subdivided area's distribution was suggested. For an objective comparison and conclusion, this study used PSNR and compared to existing methods.

Design and Implementation of Automated Detection System of Personal Identification Information for Surgical Video De-Identification (수술 동영상의 비식별화를 위한 개인식별정보 자동 검출 시스템 설계 및 구현)

  • Cho, Youngtak;Ahn, Kiok
    • Convergence Security Journal
    • /
    • v.19 no.5
    • /
    • pp.75-84
    • /
    • 2019
  • Recently, the value of video as an important data of medical information technology is increasing due to the feature of rich clinical information. On the other hand, video is also required to be de-identified as a medical image, but the existing methods are mainly specialized in the stereotyped data and still images, which makes it difficult to apply the existing methods to the video data. In this paper, we propose an automated system to index candidate elements of personal identification information on a frame basis to solve this problem. The proposed system performs indexing process using text and person detection after preprocessing by scene segmentation and color knowledge based method. The generated index information is provided as metadata according to the purpose of use. In order to verify the effectiveness of the proposed system, the indexing speed was measured using prototype implementation and real surgical video. As a result, the work speed was more than twice as fast as the playing time of the input video, and it was confirmed that the decision making was possible through the case of the production of surgical education contents.

Classification of Leukemia Disease in Peripheral Blood Cell Images Using Convolutional Neural Network

  • Tran, Thanh;Park, Jin-Hyuk;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1150-1161
    • /
    • 2018
  • Classification is widely used in medical images to categorize patients and non-patients. However, conventional classification requires a complex procedure, including some rigid steps such as pre-processing, segmentation, feature extraction, detection, and classification. In this paper, we propose a novel convolutional neural network (CNN), called LeukemiaNet, to specifically classify two different types of leukemia, including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), and non-cancerous patients. To extend the limited dataset, a PCA color augmentation process is utilized before images are input into the LeukemiaNet. This augmentation method enhances the accuracy of our proposed CNN architecture from 96.9% to 97.2% for distinguishing ALL, AML, and normal cell images.

Contour detection of hippocampus using Dynamic Contour Model and Region Growing (영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출)

  • Jang, D.P.;Kim, H.D.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF

Three-dimensional Boundary Segmentation using Multiresolution Deformable Model (다해상도 변형 모델을 이용한 3차원 경계분할)

  • 박주영;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.592-594
    • /
    • 2000
  • 변형모델(deformable model)은 볼륨의료영상(volumetric medical image)으로부터 복잡한 인체기관의 3차원적 경계를 분할해내기 위해 효과적인 방법을 제공한다. 그러나, 기존 변형모델은 초기와 의존성, 오목한 경계(concavity) 분할의 비적합성, 그리고 모델내 요소간 자체교차(self-intersection)의 제한점을 가지고 있었다. 본 연구에서는 이러한 제한점을 극복하고, 오목한 구조를 포함하는 복잡한 인체기관의 경계를 분할하기에 적합한 새로운 변형모델을 제안하였다. 제안한 변형모델은 볼륨영상 피라미드(pyramid)를 기반으로 다해상도(multiresolution)의 모델 정제화(refinement)를 수행한다. 다해상도 모델 정제화는 전역적 시셈플링(global resampling) 및 지역적 리샘플링(local resampling)를 통하여 저해상도의 모델로부터 점차 고해상도의 모델로 이동하면서 객체의 경계를 계층적으로 분할해가는 방법이다. 다해상도 모델에 의한 계층적 경계 분할은 초기화 조건에의 의존성을 극복할 수 있게할 뿐 아니라, 빠른 속도로 원하는 객체의 경계에 수렴할 수 있게 한다. 또한 지역적 리샘플링은 모델 구성요소의 정규화를 수행함으로써 객체의 오목한 부분을 성공적으로 분할할 수 있게 한다. 그리고, 제안 모델은 기존 변형모델에서 포함하는 내부 힘(internal force)과 외부 힘(external force)외에 자체교차방지 힘(non-self-intersection force)을 추가함으로서 효과적으로 모델내의 자체교차를 방지할 수 있게 하였다.

  • PDF

A Study on Composite Filter for AWGN Removal (AWGN 제거를 위한 합성 필터에 관한 연구)

  • Kwon, Se-Ik;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.684-686
    • /
    • 2017
  • Currently, image processing is used in various fields including military, medical and industrial fields. Noise added to images undermine the quality of images. As such, the removal of noise is an essential step to process images such as through recognition of images, detection of edge and segmentation of images. Studies on removing noise from images are actively being undertaken. One of the leading noises that are added to images is the AWGN(additive white Gaussian noise). This paper suggests an algorithm that synthesizes a filter that uses edge detection and standard deviation to ease AWGN.

  • PDF