• Title/Summary/Keyword: Medical Image Segmentation

Search Result 247, Processing Time 0.029 seconds

The Effective Image Diagnosis Using Curved MPR from MDCT (MDCT에서 Curved MPR을 이용한 효과적인 영상진단)

  • Song, Jong-Nam;Jang, Yeong-Ill
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.139-143
    • /
    • 2010
  • Two-dimensional(2D) images like Multi Planar Reconstruction(MPR) Image or Maximum Intensity Projection(MIP) were used for the purpose of diagnosis, but MPR image's quality were limited due to its superior limit of Z-axis ability to produce permitted radiation exposure virtuous in the permitted time limit from the existing Spiral CT. However, in company with the development of the Multi Detector Computed Tomography(MDCT), we were able to get the Data with the equal amount of Voxel, also get varied reconstructions as in the aspect of our needs. This present study propose a reconstruction technique which is to extract a field using Region of interest(ROI) segmentation method for improvement of the quality of the medical image and after that reconstruct the concerned part using the four-directed symmetry method of the oval, than using the reconstructed data, reorganize the image by using the Curved MPR method. If current proposed method is used, it is highly effective because of its ability to accurately display the disease concerned part, which will reduce the decoding time and also effectively provide information based on the accuracy of the decode.

  • PDF

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

Segmentation of Multispectral MRI Using Fuzzy Clustering (퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 step. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional(3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image is made up of applying scale space filtering to each 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with its initial centroid value as the outstanding clusters centroid value. The proposed cluster's centroid accurately. And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the method of single spectral analysis.

  • PDF

Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm (자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘)

  • Kyungdeok Seo;Sena Lee;Yongkyu Jin;Sejung Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

A Review of Computer Vision Methods for Purpose on Computer-Aided Diagnosis

  • Song, Hyewon;Nguyen, Anh-Duc;Gong, Myoungsik;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the field of Radiology, the Computer Aided Diagnosis is the technology which gives valuable information for surgical purpose. For its importance, several computer vison methods are processed to obtain useful information of images acquired from the imaging devices such as X-ray, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). These methods, called pattern recognition, extract features from images and feed them to some machine learning algorithm to find out meaningful patterns. Then the learned machine is then used for exploring patterns from unseen images. The radiologist can therefore easily find the information used for surgical planning or diagnosis of a patient through the Computer Aided Diagnosis. In this paper, we present a review on three widely-used methods applied to Computer Aided Diagnosis. The first one is the image processing methods which enhance meaningful information such as edge and remove the noise. Based on the improved image quality, we explain the second method called segmentation which separates the image into a set of regions. The separated regions such as bone, tissue, organs are then delivered to machine learning algorithms to extract representative information. We expect that this paper gives readers basic knowledges of the Computer Aided Diagnosis and intuition about computer vision methods applied in this area.

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

Automatic Image Segmention of Brain CT Image (뇌조직 CT 영상의 자동영상분할)

  • 유선국;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • In this paper, brain CT images are automatically segmented to reconstruct the 3-D scene from consecutive CT sections. Contextual segmentation technique was applied to overcome the partial volume artifact and statistical fluctuation phenomenon of soft tissue images. Images are hierarchically analyzed by region growing and graph editing techniques. Segmented regions are discriptively decided to the final organs by using the semantic informations.

  • PDF

Lung Area Segmentation in Chest Radiograph Using Neural Network (신경회로망을 이용한 흉부 X-선 영상에서의 폐 영역분할)

  • Kim, Jong-Hyo;Park, Kwang-Suk;Min, Byoung-Goo;Im, Jung-Gi;Han, Man-Cheong;Lee, Choong-Woong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.33-37
    • /
    • 1990
  • In this paper, a new method for lung area segmentation in chest radiographs has been presented. The movivation of this study is to include fuzzy informations about the relation between the image date structure and the area to be segmented in the segmentation process efficiently. The proposed method approached the segmentation problem in the perspective of pattern classification, using trainable pattern classifier, multi-layer perceptron. Having been trained with 10 samples, this method gives acceptable segmentation results, and also demonstrated the desirable property of giving better results as the training continues with more training samples.

  • PDF

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.