• Title/Summary/Keyword: Medicago sativa L.

Search Result 127, Processing Time 0.03 seconds

Salicylic Acid Counteracts Aluminum Stress-induced Growth and Biomass Yield Reduction in Medicago sativa L.

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Kim, Ki-Yong;Choi, Gi Jun;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.153-157
    • /
    • 2019
  • Salicylic acid (SA) is an essential plant growth regulator that functions as a signaling molecule in plants. The purpose of this study was to clarify how the exogenous application of SA counteracts aluminum stress-induced growth and biomass yield reduction in alfalfa exposed to aluminum (Al) stress. Two-week-old alfalfa seedlings were exposed to a combination of $AlCl_3$ ($0{\mu}M$, $50{\mu}M$ and $100{\mu}M$, respectively) and SA (0.1 mM) for 72 hours. We observed, Al stress-induced plant growth inhibition and forage yield reduction are Al stress-dependent manner. A significant reduction of plant height (42.0-52.9%), leaf relative water content (13.0-21.4%), root length (35.4-48.7%), shoot fresh weight (31.2-25.9%), root fresh weight (15.4-23.3%), shoot dry weight (12.7-22.2%), roots dry weight (47.3-53.5%), were observed in alfalfa. In contrast, SA alleviated the Al-stress and enhanced growth and biomass yield in alfalfa. This study provides useful information concerning the role of SA that counteracts aluminum stress-induced growth and yield reduction in alfalfa.

Effects of alfalfa and alfalfa-grass mixtures with nitrogen fertilization on dry matter yield and forage nutritive value

  • McDonald, Iryna;Baral, Rudra;Min, Doohong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.305-318
    • /
    • 2021
  • Alfalfa (Medicago sativa L.) is an important forage legume grown in Kansas, USA and its productivity with cool-season grasses however is unknown. The objective of this study was to determine the dry matter yield (DMY) and forage nutritive value of alfalfa-grass mixtures compared to those of alfalfa and grasses grown in monoculture with and without nitrogen fertilization. Three different alfalfa varieties were planted (reduced-lignin alfalfa, Roundup Ready, and conventional alfalfa) and two kinds of cool-season grasses (smooth brome, Bromus inermis Leyss, and tall fescue, Festuca arundinacea Schreb) were planted as a monoculture or in alfalfa-grass mixtures. Nitrogen fertilizer (urea) was applied at green-up at a rate of 56 kg/ha and after the second cutting at a rate of 56 kg/ha in 2016 and 2017, respectively. and control treatments received no nitrogen. DMY was significantly higher in monoculture alfalfa and alfalfa-grass mixtures than in grass monocultures. Between alfalfa monoculture and alfalfa-grass mixtures, no significant differences in DMY were found. For all treatments, nitrogen application significantly increased DMY compared to the control. In 2016 and 2017, the low-lignin alfalfa monoculture had the lowest acid detergent fiber (ADF) and the grass monocultures had the highest ADF. In 2016 and 2017, neutral detergent fiber (NDF) in smooth bromegrass and tall fescue was higher than in other species treatments. A low-lignin alfalfa monoculture had significantly lower NDF concentration compared to alfalfa-grass mixtures. When averaged over 2016 and 2017, relative feed value (RFV) was highest in low-lignin alfalfa and lowest in the grass monocultures. In both years, nitrogen fertilizer application did not affect nutritive values.

In vitro ruminal fermentation of fenugreek (Trigonella foenum-graecum L.) produced less methane than that of alfalfa (Medicago sativa)

  • Niu, Huaxin;Xu, Zhongjun;Yang, Hee Eun;McAllister, Tim A;Acharya, Surya;Wang, Yuxi
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.584-593
    • /
    • 2021
  • Objective: The objective of this study was to compare fenugreek (FG) with alfalfa (Alf) in ruminal fermentation and methane (CH4) production in vitro. Methods: Whole-plant FG harvested at 11- and 15-wk and Alf harvested at early and mid-bloom maturities, alone or as 50:50 mixture of FG and Alf at the respective maturity, were assessed in a series of 48-h in vitro batch culture incubations. Total fermentation gas and methane gas production, dry matter (DM) disappearance, volatile fatty acids, microbial protein and 16S RNA gene copy numbers of total bacteria and methanogens were determined. Results: Compared to early bloom Alf, FG harvested at 11-wk exhibited higher (p<0.05) in vitro DM and neutral detergent fibre disappearance, but this difference was not observed between the mid-bloom Alf and 15-wk FG. Regardless plant maturity, in vitro ruminal fermentation of FG produced less (p<0.001) CH4 either on DM incubated or on DM disappeared basis than that of Alf during 48-h incubation. In vitro ruminal fermentation of FG yielded similar amount of total volatile fatty acids with higher (p<0.05) propionate percentage as compared to fermentation of Alf irrespective of plant maturity. Microbial protein synthesis was greater (p<0.001) with 11-wk FG than early bloom Alf as substrate and 16S RNA gene copies of total bacteria was higher (p<0.01) with 15-wk FG than mid-bloom Alf as substrate. Compared to mid-bloom Alf, 15-wk FG had lower (p<0.05 to 0.001) amount of 16S RNA methanogen gene copies in the whole culture during 48-h incubation. Conclusion: In comparison to Alf, FG emerges as a high quality forage that can not only improve rumen fermentation in vitro, but can also remarkably mitigate CH4 emissions likely due to being rich in saponins.

Effect of Sowing Date on Growth Characteristics and Dry Matter Yield of Alfalfa in a Dry Paddy Field

  • Lee, Bae Hun;Lee, Ki Won;Kim, Ji Hye;Lee, Se Young;Chang, Hyoung Ki;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • This study aimed to examine the changes in dry matter yield and growth characteristics of alfalfa (Medicago sativa L.) in response to variations in sowing dates during the autumn season of 2021-22 in a dry paddy field of Chilbo-myeon, Jeongeup-si, Jeollabuk-do. Treatments comprised four sowing dates at 10-day intervals, i.e., October 8, October 18, October 28, and November 8, 2021. The winter survival rate of alfalfa showed a significant difference between different treatments but was at a satisfactory level for all (p<0.05). The winter survival rate for the fourth sowing date, a month later than the first sowing date, was approximately 11.7% lower than that for the first sowing date. The plant height ranged between 82.3-93.1 cm and 60.5-63.7 cm at the first and second harvest, respectively, smaller at the second harvest than at the first harvest. The total dry matter yield of alfalfa was the highest at 13,316 kg/ha for the first sowing date, and the later the sowing date, the lower the dry matter yield. The protein content of alfalfa ranged between 13.6-17.3% in the first harvest, lower than the standard alfalfa protein content of 20% or more. In relative feed value, the first sowing (Oct. 8) was the most significantly higher in the first harvest (p<0.05). These results suggest that the early and mid-October sowing dates are optimum for sowing alfalfa during autumn and result in improved plant growth, dry matter yield, protein content, and winter survival compared to those at later sowing dates. Therefore, dry paddy fields can be safely employed for alfalfa cultivation with sowing dates in early and mid-October during autumn.

Determination of Amino Acid Composition in Leaf, Stem, and Inflorescence of Alfalfa (Medicago sativa L.)

  • Muthusamy, Karnan;Ilavenil, Soundharrajan;Jung, Jeong Sung;Lee, Bae Hun;Nam, Cheol Hwan;Park, Hyung Soo;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.183-187
    • /
    • 2022
  • Alfalfa is one of the most useful forage crops worldwide, containing a high level of amino acids that are essential to both human and animal health. However, amino acids and their concentrations may differ between plant parts. Hence, detecting amino acids in different plant parts would be useful in the development of diet supplements. The purpose of this study was to determine the amino acid content in alfalfa leaves, stems, and inflorescences using an amino acid analyzer. Asparagine and glutamic acid were the most abundant amino acids found in stems, leaves, and inflorescences than other amino acids. All parts of alfalfa had low concentrations of cysteine and methionine. All amino acids except asparagine were present in the highest concentration in leaves followed by inflorescences. Leaf had a rich amino acid content, namely asparagine, glutamic acid, leucine, proline, and lysine. However, the stem had a lower amino acid composition than the leaf or inflorescence. Overall, the data showed determining the amino acid content of forages provides a good approach to making animal feed with essential and specific amino acids and preventing excessive inclusion of amino acids.

Comparison of Inoculation Methods of Rhizobium to Alfalfa(Medicago sativa L.) (Alfalfa 근류균 접종방법에 따른 착생 근류균수의 변화)

  • Bin, Y.H.;Han, K.S.;Choe, Z.R.;Kim, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.2
    • /
    • pp.137-140
    • /
    • 1982
  • Three levels of inoculum concentration from 10 to 30 percent, three kinds of adhesive materials, gum arabic, methyl cellulose and carboxy methyl cellulose, and five different pelleting materials including 4 different sources of lime and calcium carbonate were compared to investigate an optimum condition for seed inoculation by counting the number of viable rhizobium cells. For a peat-cultured Rhizobium inoculant, 10 per cent was found to be an optimum by showing 3.5 $\times$ 10$^9$ viable cells per seed. The highest number of viable cells were observed from gum arabic at 40 per cent, methyl cellulose at 5 per cent and carboxy methyl cellulose at 4 per cent. Among pelleting materials, a dental lime for investment originated from Ransom & Randolph Co. Ohio, U.S.A. resulted best as pelleting material.

  • PDF

Assessment of growing condition variables on alfalfa productivity

  • Ji Yung Kim;Kun Jun Han;Kyung Il Sung;Byong Wan Kim;Moonju Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.939-950
    • /
    • 2023
  • This study was conducted to assess the impact of growing condition variables on alfalfa (Medicago sativa L.) productivity. A total of 197 alfalfa yield results were acquired from the alfalfa field trials conducted by the South Korean National Agricultural Cooperative Federation or Rural Development Administration between 1983 and 2008. The corresponding climate and soil data were collected from the database of the Korean Meteorological Administration. Twenty-three growing condition variables were developed as explaining variables for alfalfa forage biomass production. Among them, twelve variables were chosen based on the significance of the partial-correlation coefficients or potential agricultural values. The selected partial correlation coefficients between the variables and alfalfa forage biomass ranged from -0.021 to 0.696. The influence of the selected twelve variables on yearly alfalfa production was summarized into three dominant factors through factor analysis. Along with the accumulated temperature variables, the loading scores of the daily mean temperature higher than 25℃ were over 0.88 in factor 1. The sunshine duration at temperature between 0℃-25℃ was 0.939 in factor 2. Precipitation days were 0.82, which was the greatest in factor 3. Stepwise regression applied with the three dominant factors resulted in the coefficients of factors 1, 2, and 3 for 0.633, 0.485, and 0.115, respectively, and the R-square of the model was 0.602. The environmental conditions limiting alfalfa growth, such as daily temperature higher than 25℃ or daily mean temperature affected annual alfalfa production most substantially among the growing condition variables. Therefore, future cultivar selection should consider the capability of alfalfa to be tolerant to extreme summer weather along with biomass production potential.

Effects of Surface-Applied Dairy Slurry on Herbage Yield and Stand Persistence : I. Orchardgrass, Reed Canarygrass and Alfalfa-Grass Mixtures

  • Min, D.H.;Vough, L.R.;Chekol, T.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.758-765
    • /
    • 1999
  • Comparative studies of the effects of rates and frequency of application of dairy slurry on herbage yield and stand persistence of alfalfa and various forage grasses have not previously been conducted. The results being reported here are part of a larger study having a primary objective of comparing the effectiveness of alfalfa (Medicago sativa L.), various grasses and alfalfa-grass mixtures for utilizing nutrients from applied dairy slurry. The objectives of this part of the study were to evaluate the effects of various rates and frequencies of application of slurry on herbage yield and stand persistence of orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa-orchanrdgreass and alfalfa-reed canarygrass mixtures managed as a 4-cutting management system. A randomized complete block design with treatments in a split plot arrangement with four replicates was used. The main plots consisted of 9 fertility treatments: 7 slurry rate and time of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The sub-plots consisted of the two grasses and two alfalfa-grass mixture mentioned above. Slurry was composed from stored solids scraped from the alleyways of a free-stall housing barn and water added to form a slurry having about 8% solids. Manure was pumped from a liquid spreader tank into 10.4 L garden water cans for manual application to the plots. Herbage yields within species were generally unaffected by various rates of application in the first production year. Herbage yields of grasses and alfalfa-grass mixtures the second year were generally not affected by frequency of application for the same rate of slurry applied. Slurry application resulted in greater herbage yield increases in grasses than alfalfa-grass mixtures in the 4-cutting management system. In general, herbage dry matter yields of grasses from the dairy slurry treatments equaled or exceeded yields from the inorganic fertilizer treatment. Stand ratings of grasses and alfalfa-grass mixtures were not changed by manure application rates. In this study, the highest rate of slurry ($967kg\;total\;N\;ha^{-1}$ in 1995 plus $2,014kg\;N\;ha^{-1}$ in 1996) was not detrimental to herbage yields or stand persistence of any of the species. It was concluded that applying dairy slurry to these cool-season grasses and alfalfa-grass mixtures managed in a 4-cutting system is an acceptable practice from the standpoint of herbage yield and satnd persistence and by doing so the utilization of inorganic fertilizers can be reduced.

Effects of Surface-Applied Dairy Slurry on Herbage Yield and Stand Persistence: II. Alfalfa, Orchardgrass, Tall Fescue and Alfalfa-Orchardgrass

  • Min, D.H.;Vough, L.R.;Chekol, T.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.766-771
    • /
    • 1999
  • The first paper of this series compared the effects of rates and frequencies of application of dairy slurry on herbage yields and stand persistence of orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.)-grass mixtures managed as a 4-cutting system. This paper compares the effects of rates and frequencies of application of dairy slurry on herbage yield and stand persistence of alfalfa, orchardgrass, tall fescue (Festuca arundinacea Schreb.), and alfalfa-orchardgrass mixture managed as a 5-cutting system. The results presented here are part of a larger study having a primary objective of comparing alfalfa, various grasses, and alfalfa-grass mixtures for utilizing nutrients from dairy slurry applied to established stands. A randomized complete block design with treatments in a split plot arrangement with four replicates was used. The main plots consisted of 9 fertility treatments: 7 slurry rate and frequency of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The sub-plots were the forage species. Manure used for the study was composed from stored solids scraped from the alleyways of a free-stall dairy barn. Water was added to from a slurry having about 8 % solids. Slurry was pumped from the liquid spreader tank into 10.4 L garden watering cans for manual application to the plots. Herbage yields of alfalfa, tall fescue, and alfalfa-orchardgrass were generally not affected by slurry application rates and were not significantly different from the inorganic fertilizer treatment. Tall fescue significantly outyielded all other forage species at all manure and the inorganic fertilizer treatments in the second year when rainfall during the growing season was unusually high. Grasses generally had a greater response to manure applications than alfalfa and alfalfa-orchardgrass. Increasing rates of manure did not increase herbage yields of alfalfa and alfalfa-orchardgrass. Herbage yields within each species were not affected by frequency of application of the same total rate. Stand ratings of alfalfa, orcahrdgrass and alfalfa-orchardgrass were significantly lower for the very high manure application rate compared to the control treatment. Based upon the results of this study, multiple annual applications of slurry manure can be made onto these species at rates up to $1,700kg\;total\;N\;ha^{-1}\;yr^{-1}$ without detrimental effects on herbage yield and stand persistence.

Symbiotic effectiveness and intrinsic antibiotic resistance of Rhizobium meliloti populated in Korean pasture soils (국내(國內) 초지토양(草地土壤)에 분포(分布)한 Rhizobium meliloti의 질소고정력(窒素固定力)과 항균제반응(抗菌劑反應) 특성(特性))

  • Kang, Ui-Gum;Ha, Ho-Sung;Jung, Yeun-Tae
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.179-185
    • /
    • 1992
  • Rhizobium meliloti populated in five Korean pasture soils were characterized by symbiotic effectiveness and intrinsic antibiotic resistance using whole-soil inoculum and 11 antibiotics, respectively. Most probable number (MPN) of naturalized rhizobia counted with alfalfa Vernal[Medicago sativa (L.)] as a host ranged $1.7{\times}10^2\;cells/g$. soil(Chunghyo, Kyeongiu)-$1.0{\times}10^5\;cells/g$. soil(Gampo, Kyeongiu) and ended to be positively associated with soil pH. On the whole, the effectiveness of population as compared to TAL mix inoculum (TAL 380+TAL 1372+TAL 1373) was very low. Nevertheless, there were two highly effective strains, YCK 539 and YCK 542, which were not inferior to TAL 1372, from Ogpo, Dalseong among the total of 30 of 6 isolates per each soil. As long as mean $N_2$ fixing ability of each soil isolate, the isolates from Hyeongog, Kyeonju were outstanding and the rest were in order of Ogpo, Dalseong>Chunghyo, Kyeongju>Hwaweon, Dalseong>Gampo, Kyeongiu. Isolates as a whole were resistant to erythromycin(67崙), nalidixic acid(77%), and streptomycin sulfate(8051), which had the concentration of $100\;{\mu}g/ml$, $160\;{\mu}g/ml$, and $10\;{\mu}g/ml$, respectively and divided into 14 patterns of resistance. Association between resistances in each soil was not clear. And there was no relationship of resistance pattern to effectiveness. The best effective strain YCKa 542 exclusively fell into No. X pattern having resistance to erythromycin, nalidixic acid, and neomycin sulfate.

  • PDF