• Title/Summary/Keyword: Media Transport

Search Result 501, Processing Time 0.031 seconds

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Kinetic Adsorption Relationships (동역학적 흡착 관계식을 이용한 다공 매질에서의 유동세균에 의한 유기성 오염물의 가속이송 예측 모델)

  • 김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1995
  • Mobile bacterial particles can act as carriers and enhance the transport of hydrophobic contaminants in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions, bacteria can act as efficient contaminant carriers. When such carriers exist in a porous medium, the system can be thought of as three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. Contaminant can be present in either or all of these phases. In this study, a mathematical model based on mass balances is developed to describe the transport and fate of biodegradable contaminant in a porous medium. Bacterial mass transfer mechanism between aqueous and solid matrix phases, and contaminant mass transfer between aqueous and bacterial phases are represented by kinetic models. Governing equations are non-dimensionalized and solved to analyze the bacteria facilitated contaminant transport. The numerical results of the facilitation effect match favorably with experimental data reported in the literature. Results show that the contaminant transport can be described by local equilibrium assumption when Damkohler numbers are larger than 10. Significant sensitivities to model parameters, particularly bacterial growth rate and influent bacterial concentration, were discovered.

  • PDF

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Design and Implementation for Construction Method of Management Network in MPLS-TP Network (MPLS-TP 망에서 관리 망 구축 방안에 대한 설계 및 구현)

  • Moon, Sungnam;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.59-65
    • /
    • 2015
  • To build a flexible network than traditional transport network, the carrier ethernet technology is emerging in network industry recently and MPLS-TP technologies are being applied as a major standard technology for the carrier ethernet. However, network management technologies required to handle equipment installed in MPLS-TP network are not clear. This paper propose an efficient method to build a management network automatically without any additional configuration when network equipments are installed in MPLS-TP network. The proposed scheme reduce cost required for both equipment installation and network maintenance by minimizing configuration procedures of connecting management system with network. We evaluated the effectiveness of the proposed scheme by applying the scheme to a real MPLS-TP equipment.

Investigation of Water Transport in Newly Developed Micro Porous Layers for Polymer Electrolyte Membrane Fuel Cells

  • Alrwashdeh, Saad S.;Markotter, Henning;Haussmann, Jan;Hilger, Andre;Klages, Merle;Muller, Bernd R.;Kupsch, Andreas;Riesemeier, Heinrich;Scholta, Joachim;Manke, Ingo
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.101-104
    • /
    • 2017
  • In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field.

Modal Nodal Transport Analysis

  • Johnson, R.Douglas
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.121-128
    • /
    • 1971
  • A unified modal-nodal expansion of tile angular distribution of neutron flux in one spatial dimension is considered, following the proposal of Harms. Several standard nodal and/or modal methods of analysis are shown to be specializations of this technique. The modal-nodal moment from of the mono-energetic transport equation with isotropic sources and scattering is derived and the infinite medium eigenvalue problem solved. The technique is shown to yield results which approximate the exact value of the inverse diffusion length in non-multiplying media more accurately than standard methods of equal or somewhat greater computational complexity.

  • PDF

Evolution of reaction zones in reactive barriers consisting of calcite and glass beads

  • Jeong Gon, Kim;Gwang Man, Lee;Ik Hwan, Go
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.19-22
    • /
    • 2004
  • Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution/ precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between tile solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  • PDF

Modeling of Water Transport in Porous Membrane for PEMFC Humidifer (PEMFC 가습기 용 다공성 중공사막의 물전달 모델링)

  • Hwang, Jun Y.;Park, J.Y.;Kang, K.;Kim, J.H.;Kim, K.J.;Lee, M.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • Water transport through the microporous membrane was modeled considering capillary condensation as well as capillary flow in porous media as a function of pore diameter and relative humidity at the surface. The present model was adopted by the numerical simulation of non-isothermal, non-homogenous flow in a shell and tube typed gas to gas membrane humidifier for PEMFC (proton exchange membrane fuel cell) and the result shows good agreement with experimental data.

  • PDF

CKD-501 INDUCED GLUCOSE TRANSPORT WAS MAINLY CAUSED BY THE STIMULATION OF GLUCOSE TRANSPOTER- TRANSLOCATION IN L6-MYOTUBES

  • Moon, C.K.;Jung, A.Y.;Kim, M.H.;Lee, Y.H.;Chae, S.H.;Kim, K.S.;Jo, Y.Y.;Kim, M.H.;Moon, K.S.
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.157-158
    • /
    • 2003
  • A newly synthesized thiazolodinedione derivative, CKD-501, was confirmed to have antihyperglycemic effect in in vivo study. The present study was undertaken to investigate the effect of CKD-501 on glucose transport and its stimulating mechanism in L6-myotubes. L6-myoblasts were cultured and differentiated to myotubes by reducing serum concentration in media from 10% to 2%. (omitted)

  • PDF

Electro-osmotic pump in osteo-articular tissue engineering: A feasibility study

  • Lemonnier, Sarah;Naili, Salah;Lemaire, Thibault
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.227-237
    • /
    • 2014
  • The in vitro construction of osteo-articular large implants combining biomaterials and cells is of great interest since these tissues have limited regeneration capability. But the development of such organoids is particularly challenging, especially in the later time of the culture, when the extracellular matrix has almost filled the initial porous network. The fluid flow needed to efficiently perfuse the sample can then not be achieved using only the hydraulic driving force. In this paper, we investigate the interest of using an electric field to promote mass transport through the scaffold at the late stage of the culture. Based on the resolution of the electrokinetics equations, this study provides an estimation of the necessary electric driving force to reach a sufficient oxygen perfusion through the sample, thus analyzing the feasibility of this concept. The possible consequences of such electric fields on cellular activities are then discussed.