• 제목/요약/키워드: Mechanosensors

검색결과 4건 처리시간 0.017초

Cellular machinery for sensing mechanical force

  • Lim, Chul-Gyun;Jang, Jiyoung;Kim, Chungho
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.623-629
    • /
    • 2018
  • For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.

Mouse models of polycystic kidney disease induced by defects of ciliary proteins

  • Ko, Je Yeong;Park, Jong Hoon
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.73-79
    • /
    • 2013
  • Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies.

Role of extrinsic physical cues in cancer progression

  • Ok-Hyeon Kim;Tae Jin Jeon;Yong Kyoo Shin;Hyun Jung Lee
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.287-295
    • /
    • 2023
  • The tumor microenvironment (TME) is a complex system composed of many cell types and an extracellular matrix (ECM). During tumorigenesis, cancer cells constantly interact with cellular components, biochemical cues, and the ECM in the TME, all of which make the environment favorable for cancer growth. Emerging evidence has revealed the importance of substrate elasticity and biomechanical forces in tumor progression and metastasis. However, the mechanisms underlying the cell response to mechanical signals-such as extrinsic mechanical forces and forces generated within the TME-are still relatively unknown. Moreover, having a deeper understanding of the mechanisms by which cancer cells sense mechanical forces and transmit signals to the cytoplasm would substantially help develop effective strategies for cancer treatment. This review provides an overview of biomechanical forces in the TME and the intracellular signaling pathways activated by mechanical cues as well as highlights the role of mechanotransductive pathways through mechanosensors that detect the altering biomechanical forces in the TME.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.25-33
    • /
    • 2019
  • 본 논문은 목표한 방향으로 자유롭게 기동할 수 있는 새 크기의 물리기반 날갯짓 비행로봇 시뮬레이션을 위한 동역학적 신경망 컨트롤러를 생성하는 통합적인 진화연산 방법을 제시한다. 제안된 진화로봇 시스템은 날갯짓 비행의 추가적인 민첩성과 안정성을 위하여 Morphological Computation 개념을 응용한 간단한 날개 순응성 모델과 그와 통합된 Mechanosensory 정보를 활용한다. 역학적으로 불안정한 날갯짓 기동의 안정성 개선을 위해 로봇의 날개는 회전스프링으로 팔의 골격에 연결된 여러개의 패널들로 모델링되어, 새의 깃털에서 영감을 받은 단순한 형태의 날개 유연성을 시뮬레이션 하도록 설계되었다. 신경망 컨트롤러 역시 생물학적으로 의미있는 좌우대칭적 연결구조를 가짐과 동시에 최대의 진화연산 탐색 가능성을 위해 두 개의 fully-connected 신경망 모듈로 이루어지며, 이를 위한 센서정보로서 항법센서와 더불어 각 날개패널의 움직임 보들이 입력되어진다. 이러한 설계는 각 패널센서로 하여금 잠재적으로 신경망의 날갯짓 패턴 생성에 관여하게 함과 동시에, 날개에 가해지는 힘의 감지와 패널의 굽어짐으로 인한 날개 순응성으로부터 얻을 수 있는 비행의 민첩성과 안정성 향상을 동시에 유도할 수 있다. 본 시스템으로 진화된 날갯짓 로봇은 실시간으로 주어지는 목표방향으로의 효과적인 기동과 함께, 외부의 공기역학적 섭동에 대하여도 더욱 안정적인 비행을 유지함을 보여준다.