• Title/Summary/Keyword: Mechanochemical processing

Search Result 19, Processing Time 0.03 seconds

Fabrication of Concrete Containing Mechanochemically Surface Treated(MST) Fly Ash (Mechanochemical 표면처리한 Fly Ash 혼화 Concrete의 제조)

  • Lee, Hyung-Jik;Koo, Ja-Hun;Yoo, In-Sang;Song, Doo-Gyoo;Joung, Hae-Kyoung;Kwon, Hyouk-Byoung;Yoon, Sang-Ok;Lee, Hyung-Bock;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.135-144
    • /
    • 2002
  • Fabrication of high strength structural concrete was investigated by using a mechanochemically Surface Treated Fly Ash(MSTFA) induced by mechanochemical processing through ball-milling of (90 wt% As Recevied Fly Ash(ARFA) + 10wt% cement) mixture, which was compared to the specimen fabricated by using As Received Fly Ash(ARFA) in terms with compressive strength and microstructures. The compressive strength of concrete specimen fabricated by using MSTFA represented 10-20% and 2-7% higher value than that for the case of using ARFA and BPFA in each cases. Increased compressive strength as above mentioned is considered to be caused by mutually increased affinity generated between cement and fly ash during mechanochemical processing.

Structural and Magnetic Properties of Mechanochemically Prepared Li Ferrite Nanoparticles

  • Haddadi, M.;Mozaffari, M.;Amighian, J.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.169-174
    • /
    • 2017
  • In this work, lithium ferrite ($Li_{0.5}Fe_{2.5}O_4$) nanoparticles were prepared via mechanochemical processing and subsequent heat treatment at a relatively low ($600^{\circ}C$) calcining temperature. The raw materials used were high purity $Fe_2O_3$ and $Li_2CO_3$ that were milled for between 2 and 20 h. The milled powders were then calcined at temperatures of 500 and $600^{\circ}C$ for 5 h in air. XRD results show that optimum conditions to obtain single phase lithium ferrite nanoparticles with a mean crystallite size of about 23 nm, using Scherrer's formula, are 10 h milling and calcination at $600^{\circ}C$. Saturation magnetization and coercivity of the single phase Li ferrite nanoparticles are 44.6 emu/g and 100 Oe respectively, which are both smaller than those of the bulk Li ferrite. The Curie temperature of the single sample was determined by a Faraday balance, which is $578^{\circ}C$ and smaller than that of bulk Li ferrite.

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics

  • Sahin, Yesim Muge;Orman, Zeynep;Yucel, Sevil
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2018
  • In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.

Synthesis of TiN/TiB2/Ti-silicides Nanocomposite Powders by Mechanochemical Reaction and its Reaction Mechanism (기계화학반응에 의한 TiN/TiB2/Ti-silicides 나노복합분말의 합성과 반응기구)

  • Cho Young-Whan;Kim Ji-Woo;Shim Jae-Hyeok;Ahn Jae-Pyoung;Oh Kyu-Hwan
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.273-278
    • /
    • 2005
  • Nanostructured TiN/$TiB_2$/$TiSi_2$ and TiN/$TiB_2$/$Ti_5Si_2$ composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and $Si_3N_4$ powders. The raw materials have reacted to form a uniform mixture of TiN, $TiB_2$ and $TiSi_2$ or $Ti_5Si_3$ depending on the amount of $Si_3N_4$ used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and $TiB_2$ crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous $TiSi_2$ or $Ti_5Si_3$ matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly.

Technology and Applications of Mechanical Alloying Processing (기계적 합금화 공정 기술 및 응용)

  • 이광민;김진천;이재성;김영립
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • 1980년대 후반부터 집중적으로 연구되어온 기계적 합금화 공정 기술은 이제 단순화합물 조성의 합금화공정 뿐 만아니라 기계화학적(Mechanochemical) 방법으로까지 진보되어 다양한 시스템으로의 응용기술로까지 발전하게 되었다 더욱이 최근 나노기술의 한고상 제조기술로서도 역할을 하게 되는 기계적 합금화 공정 기술은 21세기에 있어서도 본문에서 연급한 바와 같은 고온용 고장도 Al 합금제조 외에도 나노결정립 분말, 자성재료, 에너지전환/저장기능재료, 준결정상제어 분야로서의 무한한 응용 가능성을 기대해 볼 수 있다.

Synthesis of MnFeP1-xAsx Nanocrystalline Powders by High-Energy Ball Milling (고에너지볼밀링을 이용한 MnFeP1-xAsx 나노분말의 합성)

  • 조영환
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 2003
  • Nanocrystalline powders of $MnFeP_{1-x}As_x$(x=0.45-0.6) have been synthesized by mechanochemical reaction at room temperature using high-energy ball milling from mixtures of Mn, Fe, P, and As Powders. It has been found that a mechanically induced self-propagating reaction (MSR) occurs within 2 hours of milling and it produces very fine polycrystalline powder having a hexagonal $Fe_2P$ structure. Further milling up to 24 hours did not change the crystalline and average particle sizes or the phase composition of the milling product. When x is 0.65, no reaction among the reactants has been observed even after 24 hours of milling. As the P content decreases in $MnFeP_{1-x}As_x$, the incubation time for the MSR has increased and the lattice constants in both a and c axes have changed.

Nanocomposite magnetic powder materials using mechanochemical Synthesis

  • Soh, Dae-Wha;Mofa, N.N.;Keteguenov, T.A.;Mansurov, Z.A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.585-587
    • /
    • 2002
  • The materials showing high structure dispersity are developed on the quartz base and they are obtained by mechano-chemical technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, contain a dielectric material as a canγing nucleus, particularly the quartz on that surface one or more layers of different compounds are synthesized having thickness up to 10~50 nm and showing magnetic, electrical and other properties.

  • PDF

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Mechanochemical Synthesis of Pigment from Potash Feldspar (기계화학적 합성에 의한 합석으로부터의 안료 제조)

  • Bae, Kwang-Hyun;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • The possibility of producing the pigments from potash feldspar was studied by adopting the mechanical alloying technique under various gas environments. The experiments were carried out by varying grinding time with the addition of copper metal and titanium oxide in N₂, O₂, He, CO₂, H₂and air atmospheres. The mixture of the potash feldspar concentrate and copper and titanium dioxide are finely ground by a planetary ball mill, and then the composite powders were calcined at 1200℃ for 20 minutes. As a result, the calcined feldspar with 1 wt% of Cu has shown various colors like green in air, black in O₂, dark green in CO₂, brown in H₂, purple in He, and pale green in N₂ atmospheres, respectively.