• 제목/요약/키워드: Mechanistic study

검색결과 298건 처리시간 0.023초

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

Derivation of Mechanistic Critical Heat Flux Model and Correlation for Water Based on Flow Excursion

  • Chang, Soon-Heung;Kim, Yun-Il;Baek, Won-Pil
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.349-355
    • /
    • 1996
  • In this study, the mechanistic critical heat flux (CHF) model and correlation for water are derived based on flow excursion (or Ledinegg instability) criterion and the simplified two-phase homogeneous model. The relationship between CHF for the water and the principal parameters such as mass flux heat of vaporization, heated length-to-diameter ratio, vapor-liquid density ratio and inlet subcooling is derived on the developed correlation. The developed CHF correlation predicts very well at the applicable ranges, 1 < P < 40 bar, 1, 300 < G 27, 00 kg/$m^2$s and inlet quality is less than -0.1. The overall mean ratio of predicted to experimental CHF value is 0.988 with standard deviation of 0.046.

  • PDF

MEPDG를 이용한 아스팔트/연속철근 콘크리트 복합포장 간편 설계 (Simple AC/CRC Composite Pavement Design Using MEPDG)

  • 백종은;김형배;이현종
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : Analysis and design of asphalt concrete (AC) and continuously reinforced concrete (CRC) composite pavements. METHODS : In this study, the service life of the AC/CRC composite pavements was determined based on the probabilistic method in the mechanistic-empirical pavement design guide(MEPDG). Typical pavement design was provided with respect to heavy truck traffic volume of highways. RESULTS : The service life of the composite pavements based on IRI was shorter than that based on rutting at lower traffic volume, but this trend was switched at higher traffic volume. CONCLUSIONS : It is concluded that the main distress affecting the service life of the composite pavements was longitudinal roughness and rutting. Roughness became lower, but rut depth became greater as the stiffness of the CRC increased.