• Title/Summary/Keyword: Mechanism simulation

Search Result 2,645, Processing Time 0.029 seconds

Performance Analysis of Input-Output Buffering ATM Switch with Output-port Expansion Mechanism (출력포트 확장 방식을 사용한 입출력 버퍼형 ATM 교환기에서의 성능 비교 분석)

  • Kwon, Se-Dong;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.531-542
    • /
    • 2002
  • An input and output buffering ATM switch conventionally operates in either Queueloss mode or Backpressure mode. Recently, a new mode, which is called Hybrid mode, was proposed to overcome the drawbacks of Queueloss mode and Backpressure mode. In Hybrid mode, when both the destined output buffer and the originfted input buffer are full, a cell is dropped. This thesis analyzes the cell loss rate and the cell delay of Queueloss, Backpressure and Hybrid modes in a switch adopting output-port expansion scheme under uniform traffic. Output-port expansion scheme allows only one cell from an input buffer to be switched during one time slot. If several cells switch to a same destined output port, the number of maximum transfer cells is restricted to K (Output-port expansion ratio). The simulation results show that if an offered load is less than 0.9, Hybrid mode has lower cell loss rate than the other modes; otherwise, Queueloss mode illustrates the lowest cell loss rate, which is a different result from previous researches. However, the difference between Hybrid and Queueloss modes is comparably small. As expected, the average cell delay in Backpressure mode is lower than those of Queueloss mode and Hybrid mode, since the cell delay due to the retransmission of higher number of dropped cells in Backpressure mode is not considered.

A Load Balancing Method using Partition Tuning for Pipelined Multi-way Hash Join (다중 해시 조인의 파이프라인 처리에서 분할 조율을 통한 부하 균형 유지 방법)

  • Mun, Jin-Gyu;Jin, Seong-Il;Jo, Seong-Hyeon
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.180-192
    • /
    • 2002
  • We investigate the effect of the data skew of join attributes on the performance of a pipelined multi-way hash join method, and propose two new harsh join methods in the shared-nothing multiprocessor environment. The first proposed method allocates buckets statically by round-robin fashion, and the second one allocates buckets dynamically via a frequency distribution. Using harsh-based joins, multiple joins can be pipelined to that the early results from a join, before the whole join is completed, are sent to the next join processing without staying in disks. Shared nothing multiprocessor architecture is known to be more scalable to support very large databases. However, this hardware structure is very sensitive to the data skew. Unless the pipelining execution of multiple hash joins includes some dynamic load balancing mechanism, the skew effect can severely deteriorate the system performance. In this parer, we derive an execution model of the pipeline segment and a cost model, and develop a simulator for the study. As shown by our simulation with a wide range of parameters, join selectivities and sizes of relations deteriorate the system performance as the degree of data skew is larger. But the proposed method using a large number of buckets and a tuning technique can offer substantial robustness against a wide range of skew conditions.

Load Balancing Mechanisms for Foreign Agents in Hierarchical Mobile IPv4 Networks (계층적 MIPv4 네트워크에서의 외부 에이전트 부하 분산 방안)

  • Byun Haesun;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.167-179
    • /
    • 2005
  • In hierarchical Mobile IPv4 Networks the highest FA(Foreign Agent) may experience serious congestion and delay since the highest FA plays a role of CoA(Care of Address) for all mobile nodes in the domain, In this paper, we propose mechanism called 'HRFA(Hierarchical Root Foreign Agent)', which distributes the load imposed on the highest FA. In the proposed HRFA scheme, multiple HRFAs are selected to provide the similar service that is provided by the highest FA. According to which entity determines HRFAs, HRFA scheme is categorized into 'Active' and 'Passive' approaches. HRFA scheme is further categorized into 'All MN(Mobile Node)s' and 'New MNs' approaches, depending on which mobile nodes are assigned to a newly elected HRFA. Through a course of simulations, we investigate the performance of 4 possible combinations of HRFA schemes. We also compare the performance of the proposed HRFA schemes with the LMSP(Local Multicast Service Provider) scheme, which is a scheme to distribute the load of FA for multicast service in hierarchical wireless network domain. The simulation results show that the Passive & New MN approach performs best with respect to both the overhead and the load balancing.

Analysis on Multi-Components of Neurotransmitter Release in Response to Light of Retinal ON-Type Bipolar Cells (망막 ON형 쌍극세포의 광응답에 따른 다중성분의 전달물질 방출에 관한 해석)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.222-230
    • /
    • 2013
  • Retinal bipolar cells according to the light stimulus respond to potential slowly, emit neurotransmitter release(glutamine acid) to depend on membrane potential. In this paper, the several physiological information on neurotransmitter release mechanism in the presynaptic terminal of the ON-type bipolar cells are incorporated into the formula model. The source of fast components and slow components of neurotransmitter release was arranged in parallel, this model was able to reproduce the membrane potential and intracellular $Ca^{2+}$ concentration dependence of neurotransmitter release faithfully. In addition, because the fast releasable components of neurotransmitter was represented by the membrane potential dependence of trapezoid type, whereas the slow releasable components was represented by the membrane potential dependence of a bell type, $Ca^{2+}$ concentration rise in intracellular is suppressed by $Ca^{2+}$ buffer to reduce slow releasable components, it was confirmed that the membrane potential dependence of neurotransmitter release was characteristics of a trapezoid type. And, in the light response of ON type bipolar cell, the result of the simulation of the neurotransmitter release caused by the components of transient and persistent was that the start of light response occurred the fast release of neurotransmitter, it was confirmed that the transient component and persistent component of the light response occurred the slow release. It was confirmed that the later of persistent component of the light response occurred due to the continuous release by synaptic vesicle supplemented from the storage pool.

A Distributed address allocation scheme based on three-dimensional coordinate for efficient routing in WBAN (WBAN 환경에서 효율적인 라우팅을 위한 3차원 좌표 주소할당 기법의 적용)

  • Lee, Jun-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.663-673
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device interactive communication by connecting devices inside and outside of body. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. Wireless body area network is usually configured in energy efficient using sensor and zigbee device due to the power limitation and the characteristics of human body. Wireless sensor network consist of sensor field and sink node. Sensor field are composed a lot of sensor node and sink node collect sensing data. Wireless sensor network has capacity of the self constitution by protocol where placed in large area without fixed position. In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in WBAN environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignment

Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System (회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • In this paper, we propose an optimized fuzzy controller based on Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) for rotary inverted pendulum system. We adopt fuzzy controller to control the rotary inverted pendulum and the fuzzy rules of the fuzzy controller are designed based on the design methodology of Linear Quadratic Regulator (LQR) controller. Simple Genetic Algorithms (SGAs) is well known as optimization algorithms supporting search of a global character. There is a long list of successful usages of GAs reported in different application domains. It should be stressed, however, that GAs could still get trapped in a sub-optimal regions of the search space due to premature convergence. Accordingly the parallel genetic algorithm was developed to eliminate an effect of premature convergence. In particular, as one of diverse types of the PGA, HFCGA has emerged as an effective optimization mechanism for dealing with very large search space. We use HFCGA to optimize the parameter of the fuzzy controller. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy controller leads to superb performance in comparison with the conventional LQR controller as well as SGAs based fuzzy controller.

Performance Analysis of AAL2 Packet Dropping Algorithm using PDV on Virtual Buffer (PDV를 이용한 가상 버퍼상의 AAL2 패킷 폐기 알고리즘과 성능분석)

  • Jeong, Da-Wi;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.20-33
    • /
    • 2002
  • Usage of ATM AAL2 packets becomes dominant to increase transmission efficiency of voice traffic in the backbone network. In case of voice service that uses AAL2 mechanism, if resources of network are enough, connection of new call is accepted. However, due to packets generated by the new call, transmission delay of packets from old calls can increase sharply. To control this behavior, in this paper we present an AAL2 buffer management scheme that allocates a virtual buffer to each call and after calculating its propagation delay variation(PDV), decides to drop packets coming from each call according to the PDV value. We show that this packet dropping algorithm can effectively prevent abrupt QoS degradation of old calls. To do this, we analyze AAL2 packet composition process to find a critical factor in the process that influences the end-to-end delay behavior and model the process by K-policy M/D/1 queueing system and MIN(K, Tc)-policy M/D/1 queueing system. From the mathematical model, we derive the probability generating function of AAL2 packets in the buffer and mean waiting time of packets in the AAL2 buffer. Analytical results show that the AAL2 packet dropping algorithm can provide stable AAL2 packetization delay and ATM cell generation time even if the number of voice sources increases dramatically. Finally we compare the analytical result to simulation data obtained by using the COMNET Ⅲ package.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

Integrated Authentication and Key Management Method among Heterogeneous Wireless Mobile Networks (이기종 무선 이동망간 통합 인증 및 키관리 기법)

  • Park Hyung-Soo;Lee Hyung-Woo;Lee Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.50-59
    • /
    • 2006
  • The new communication paradigm is rapidly shifted from wireless mobile networks to an All-IP(Internet Protocol) network, led by service industry leaders and communication manufacturers. In this paradigm, providing authentication and session keys of a subscriber becomes one of the critical tasks because of IP open accessibility among heterogeneous networks. In this paper, we introduce authentication process procedure of heterogeneous wireless mobile networks and develop so-called IMAS(Integrated Mobile Authentication Server) which can securely inter-work among all mobile networks and support the legacy networks with backward compatibility. Especially, in designing IMAS, mobile authentication inter-working mechanism, key management technique, and other issues to be overcome are presented. We analyze and evaluate the performance of authentication algorithm which creates session key. A simulation environment of IMAS is established, and a performance(TPS; Transaction Per Second) result is analyzed and evaluated. It turned out that IMAS works among heterogeneous wireless mobile networks without compensating efficiency and functionalities of the legacy networks and decrease the entropy of data redundancy and data inconsistency among networks because of the integrity of the distributed Data Base(DB).

Performance Evaluation of Traffic Adaptive Sleep based MAC in Clustered Wireless Sensor Networks (클러스터 기반 무선 센서 망에서 트래픽 적응적 수면시간 기반 MAC 프로토콜 성능 분석)

  • Xiong, Hongyu;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, a traffic adaptive sleep based medium access control (TAS-MAC) protocol for wireless sensor networks (WSNs) is proposed. The protocol aims for WSNs which consist of clustered sensor nodes and is based on TDMA-like schema. It is a typical schedule based mechanism which is adopted in previous protocols such as LEACH and Bit-Map Assisted MAC. The proposed MAC, however, considers unexpected long silent period in which sensor nodes have no data input and events do not happen in monitoring environment. With the simple traffic measurement, the TAS-MAC eliminates scheduling phases consuming energy in previous centralized approaches. A frame structure of the protocol includes three periods, investigation (I), transmission (T), and sleep-period (S). Through the I-period, TAS-MAC aggregates current traffic information from each end node and dynamically decide the length of sleep period to avoid energy waste in long silent period. In spite of the energy efficiency of this approach, the delay of data might increase. Thus, we propose an advanced version of TAS-MAC as well, each node in cluster sends one or more data packets to cluster head during the T-period of a frame. Through simulation, the performance in terms of energy consumption and transmission delay is evaluated. By comparing to BMA-MAC, the results indicate the proposed protocol is more energy efficient with tolerable expense in latency, especially in variable traffic situation.