• Title/Summary/Keyword: Mechanism simulation

Search Result 2,647, Processing Time 0.033 seconds

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

A Solution for Congestion and Performance Enhancement using Dynamic Packet Bursting in Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 패킷 버스팅을 이용한 혼잡 해결 및 성능향상 기법)

  • Kim, Young-Duk;Yang, Yeon-Mo;Lee, Dong-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.409-414
    • /
    • 2008
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To solve the congestion and achieve load balancing, many protocols have been proposed. However, the existing load balancing schemes has only considered avoiding the congested route in the route discovery procedure or finding an alternative route path during a communication session. To mitigate this problem, we have proposed a new scheme which considers the packet bursting mechanism in congested nodes. The proposed packet bursting scheme, which is originally introduced in IEEE 802.11e QoS specification, is to transmit multiple packets right after channel acquisition. Thus, congested nodes can forward buffered packets promptly and minimize bottleneck situation. Each node begins to transmit packets in normal mode whenever its congested status is dissolved. We also propose two threshold values to define exact overloaded status adaptively; one is interface queue length and the other is buffer occupancy time. Through an experimental simulation study, we have compared and contrasted our protocol with normal on demand routing protocols and showed that the proposed scheme is more efficient and effective especially when network traffic is heavily loaded.

A Numerical Study on the Fire Suppression Characteristics of a Water Mist with Natural Wind in a Road Tunnel (도로터널에서 자연풍에 의한 미세물분무의 화재제어 특성에 관한 수치해석 연구)

  • Hwang, Cheol-Hong;Kim, Han-Su;Lee, Chang-Eon;Jang, Young-Nam;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • In this study, the fire suppression characteristics of a water mist with natural wind in a road tunnel were calculated using the FDS(Fire Dynamic Simulation) code. In addition, the cooling and the chemical kinetic effects of water vapor on fire extinction ere investigated in a counterflow non-premixed flame using a detailed chemistry. As a result, the behavior of fire plume and the spray characteristics of water mist are modified remarkably with the increasing of wind velocity. In the case which is not the external natural wind, small droplets are more efficient in fire suppression than large droplets. However, the large droplets show better results on the fire suppression than the small droplets with the increasing of wind velocity. It can be estimated that the natural wind disturb the penetration of water droplets into the flame region and decrease the effect of oxygen dilution. Finally, it can be identified that the fire into the natural wind can be suppressed with smaller amount of $H_2O$ by flame stretching effect in the flame region than one in an enclosure, and the chemical kinetic effects of $H_2O$ on fire extinction are not affected significantly the velocity of natural wind.

Optimization of a Cam Profile in a Circuit Breaker to Improve Latching Performance (캠 윤곽 최적설계를 통한 차단기 래칭 성능 향상)

  • Lee, Jae Ju;Jang, Jin Seok;Park, Hyun Gyu;Yoo, Wan Suk;Kim, Hyun Woo;Bae, Byung Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • Higher circuit breaker safety standards can be obtained by increasing the sustaining time of the latching section. This time increase is achieved through velocity reduction after contacting when the closing mechanism operates. The potential for the re-closing phenomenon to occur is also reduced by obtaining time to return open latch. In this study, the sustaining time for the latching section was increased through cam profile optimization based on the displacement response of the moving parts. In addition, the existing performance velocity was also satisfied. A multibody dynamics model of the circuit breaker was developed using ADAMS. To validate the model, simulation results were compared to experiment results. Then, cam profile optimization was carried out using an optimal design program PIAnO. Design variables selected included the radial direction of the cam. Design sensitivity analysis was carried out by design section as well. As a result of optimization, the sustaining time for the latching section was increased.

A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model (두 가지 연직혼합방안에 따른 해양대순환모형 혼합층깊이 및 상층수온 모사 민감도 비교)

  • Yi, Dong-Won;Jang, Chan Joo;Yeh, Sang-Wook;Park, Taewook;Shin, Ho-Jeong;Kim, Donghoon;Kug, Jong-Seong
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.249-258
    • /
    • 2013
  • Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM). In this study, by using Modular Ocean Model version 4 (MOM4) developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST) simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion, what determines SST is crucial in interpreting the relationship between SST and mixed layer depth.

QoS improving method of Smart Grid Application using WMN based IEEE 802.11s (IEEE 802.11s기반 WMN을 사용한 Smart Grid Application의 QoS 성능향상 방안 연구)

  • Im, Eun Hye;Jung, Whoi Jin;Kim, Young Hyun;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • Wireless Mesh Network(WMN) has drawn much attention due to easy deployment and good scalability. Recently, major power utilities have been focusing on R&D to apply WMN technology in Smart Grid Network. Smart Grid is an intelligent electrical power network that can maximize energy efficiency through bidirectional communication between utility providers and customers with ICT(Information Communication Technology). It is necessary to guarantee QoS of some important data in Smart Grid system such as real-time data delivery. In this paper, we suggest QoS enhancement method for WMN based Smart Grid system using IEEE 802.11s. We analyze Smart Grid Application characteristics and apply IEEE 802.11s WMN scheme for Smart Grid in domestic power communication system. Performance evaluation is progressed using NS-2 simulator implementing IEEE 802.11s. The simulation results show that the QoS enhancement scheme can guarantee stable bandwidth irrespective of traffic condition due to IEEE 802.11s reservation mechanism.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

Customized Evacuation Pathfinding through WSN-Based Monitoring in Fire Scenarios (WSN 기반 화재 상황 모니터링을 통한 대피 경로 도출 알고리즘)

  • Yoon, JinYi;Jin, YeonJin;Park, So-Yeon;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1661-1670
    • /
    • 2016
  • In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.

Local Grid-based Multipath Routing Protocol for Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 지역적 격자 기반 다중 경로 전송 방안)

  • Yang, Taehun;Kim, Sangdae;Cho, Hyunchong;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1428-1436
    • /
    • 2016
  • A multipath routing in wireless sensor networks (WSNs) provides advantage such as reliability improvement and load balancing by transmitting data through divided paths. For these reasons, existing multipath routing protocols divide path appropriately or create independent paths efficiently. However, when the sink node moves to avoid hotspot problem or satisfy the requirement of the applications, the existing protocols have to reconstruct multipath or exploit foot-print chaining mechanism. As a result, the existing protocols will shorten the lifetime of a network due to excessive energy consumption, and lose the advantage of multipath routing due to the merging of paths. To solve this problem, we propose a multipath creation and maintenance scheme to support the mobile sink node. The proposed protocol can be used to construct local grid structure with restricted area and exploit grid structure for constructing the multipath. The grid structure can also be extended depending on the movement of the sink node. In addition, the multipath can be partially reconstructed to prevent merging paths. Simulation results show that the proposed protocol is superior to the existing protocols in terms of energy efficiency and packet delivery ratio.

Study on a Neural UPC by a Multiplexer Information in ATM (ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구)

  • Kim, Young-Chul;Pyun, Jae-Young;Seo, Hyun-Seung
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.36-45
    • /
    • 1999
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. In this paper, Buffered Leaky Bucket which applies the same control scheme to a variety of traffics requiring the different QoS(Quality of Service) and Neural Networks lead to the effective buffer utilization and QoS enhancement in aspects of cell loss rate and mean transfer delay. And the cell scheduling algorithms such as DWRR and DWEDF for multiplexing the incoming traffics are enhanced to get the better fair delay. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate and buffer threshold are changed by the predicted values. The prediction of traffic loss rate by neural networks can enhance efficiency in controlling the cell loss rate and cell transfer delay of next incoming cells and also be applied for other traffic controlling schemes. Computer simulation results performed for random cell generation and traffic prediction show that QoSs of the various kinds of traffcis are increased.

  • PDF