• Title/Summary/Keyword: Mechanism of adsorption

Search Result 450, Processing Time 0.026 seconds

High performance pervaporative desalination of saline waters using Na-X zeolite membrane

  • Malekpour, Akbar;Nasiri, Hamed
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 2017
  • A high quality Na-X zeolite membrane was synthesized on a seeded ${\alpha}-alumina$ disc by the secondary growth method. Structural characterization was done by X-ray spectroscopy, FT-IR spectroscopy, SEM and AFM imaging. The performance evaluation of the membrane was firstly tested in separation of glucose/water solutions by pervaporation process. There was obtained a separation factor $182.7{\pm}8.8$, while the flux through the membrane was $3.6{\pm}0.3kg\;m^{-2}\;h^{-1}$. The zeolite membrane was then used for desalination of aqueous solutions consisting of $Na^+$, $Ca^{2+}$, $Cs^+$ and $Sr^{2+}$ because of the importance of these ions in water and wastewater treatments. The effects of some parameters such as temperature and solution concentration on the desalination process were studied for investigating of diffusion/adsorption mechanism in membrane separation. Finally, high water fluxes ranged from 2 up to $9kg\;m^{-2}\;h^{-1}$ were obtained and the rejection factors were resulted more than 95% for $Na^+$ and $Ca^{2+}$ and near to 99% for $Cs^+$ and $Sr^{2+}$. Based on the results, fluxes were significantly improved due to convenient passage of water molecules from large pores of NaX, while the fouling was declining dramatically. Based on the results, NaX zeolite can efficiently use for the removal of different cations from wastewaters.

Modification of Cotton Fiber by Enzymatic Treatment (효소처리에 의한 면직물의 개질)

  • 조민정;김태경;임용진;이상복
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.15-26
    • /
    • 1994
  • Cotton fabrics were treated with the cellulase which is an enzyme to decompose cellulose and its actional mechanism is known. The optimum condition of the cellulase to the cotton fabrics and the weight losses, tensile strengths of the treated cotton fabrics were also obtained. The cellulase performs a specific catalytic action on the ${\beta}-1$, 4-glucosidic bonds of the cellulose molecules and hydrolyzes them. For that reason, the negative surface charges of the cotton fabrics were increased by additional generation. of hyrdoxyl groups. The increased surface charges cause the decrease of dye adsorption by inhibiting the approach of the anions of direct dyes. But, it was overcome by the use of enough amount of salt, it means that sodium ions of the salt neutralize the almost all of negative charges of the cotton fabrics. The improvement of the water absorbency is also due to the increased hydroxyl groups In addition, their handles including the mechanical properties were measured and caculated by KES system which is a measuring apparatus that numerizes and objectificates human's feeling, especially touch. As the results, we knew that KOSH(stiffness) and FUKURAMI(fulness & softness) were decreased and that NUMERI(smoothness) was increased.

  • PDF

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography (II) (고성능 액체 크로마토그래피에 의한 기능성 헤테로 고리 화합물의 분리(II))

  • Cho, Yun Jin;Lee, Young Cheol;Lee, Kwang-PiII;Park, Keung-Shik
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.292-296
    • /
    • 1998
  • Normal phase or reversed phase liquid chromatographic separation of isoquinoline of heterocyclic compounds and structural isomers of external substituents, $COOCH_3$, CN and $CH_3$ has been carried out by using several different columns and various mobile phases. From this results, the order of elution of heterocyclic compounds appears to depend on the solvent effect with kinds of mobile phases. Retention mechanism of normal phase system for 2-methylindoline, 2-methylindole, benzoxazole and benzothiazole was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

Formation Mechanism and Corrosion-Resistance of Magnesium Film by Physical Vapour Deposition Process (물리증착법에 의해 제작한 마그네슘 박막의 형성기구와 내식특성)

  • 이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 1994
  • Mg thin films were prepared on SPCC(cold-rolled steel) substrates by vasuum evapoaration and ion-plating. The influence of argon gas pressure and substrates bias voltage on the crystal orientation and morphology of the film was determined by using X-ray diffraction and scanning electron micrography (SEM), respectively. And the effect of crystal orientation and morphology of the Mg thin films on corrosion behavior was estimated by measuring the anodic polarization curves in deaerated 3% NaCl solution. The crystal orientation of the Mg films deposited at high argon gas pressure exhibited a (002) preferred orientation, regardless of the substrate bias voltage. Film morphology changed from a columnar to a granular structure with the increase of argon gas pressure. The morphology of the films depended not only on argon gas pressure but also bias voltage ; i.e., the effect of increasing bias voltage was similar to that of decreasing argon gas pressure. The influences of argon gas pressure and bias voltage were explained by applying the adsorption inhibitor theory and the sputter theory. And also, this showed that the corrosion resistance of the Mg thin films can be changed by controlling the crystal orientaton and morphology.

  • PDF

A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area (광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Moon, Deok Hyun;Ko, Ju In;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement (오염하천 수질개선을 위한 Hybrid형 인공습지의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

Synthesis of Natural Rubber-g-polyacrylamide Polymer (Natural Rubber-polyacrylamide Graft 공중합체의 합성)

  • Son, Cha Hoo;Kim, Kyung Hwan;Park, Tchun Wook
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.45-53
    • /
    • 1995
  • Natural rubber(NR)-polyacrylamide(PAAm) graft copolymers(GP)(toluene soluble GP : TSGP, water dispersible GP : WDGP) have been synthesized as coupling agents by pre-emulsification methods based on "inverse emulsion graft polymerization" technique. The polymerization was carried out at $65^{\circ}C$ using Azobisisobytyro nitrile(AIBN) as an initiator in the inverse emulsion system formed by inxing NR toluene solution with inverse emulsion of awueous AAm solution emulsified with $Tween^{\#}$ 80 in toluene. The mechanism of inverse emulsion graft copolymerization was studied on AAm conversion, % grafting, grafting efficiency, NR conversion, production ratio of TSGP and amount of GP(sum of TSGP and WDGP). The reaction has been confirmed through use of optical microscope to proceed via adsorption of emulsifier colloid particles onto the stretched NR molecule. From the analysis of the effects of various polymerization conditions on the grafting, it has also been found that the present rection system can easily yield high(over 90%) grafting efficiency and AAm conversion and relatively high(over 80%) NR conversion.onversion.

  • PDF

Fundamentals of Underpotential Deposition : Importance of Underpotential Deposition in Interfacial Electrochemistry

  • Lee Jong-Won;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • This article covers the fundamentals of underpotential deposition (UPD), focussing on the importance of UPD in interfacial electrochemistry. Firstly, this article described the basic concepts of UPD, including underpotential shift and electrosorption valency. Secondly, the present article explained UPD of hydrogen, followed by hydrogen evolution or hydrogen absorption, giving special attention to the adsorption sites of hydrogen on metal surface and the absorption mechanism into Pd. Finally, this article briefly presented the important factors associated with UPD in various fields of interfacial electrochemistry from practical viewpoints.

Sonochemical Synthesis of $PbMoO_4$ Nanoparticles and Evaluation of its Photocatalytic Activity

  • Uresti, Diana B. Hernandez;De la Cruz, Azael Martinez;Martinez, Leticia M. Torres;Lee, Soo-Wohn
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.49.2-49.2
    • /
    • 2011
  • $PbMoO_4$ nanoparticles were successfully obtained in the presence of ethylene glycol (EG) with the assistance of a prolonged sonication process. The nanoparticles were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and adsorption-desorption $N_2$ isotherms (BET). The catalyst prepared sonochemically showed higher photocatalytic activity than $PbMoO_4$ prepared by solid-state reaction in the degradation reactions of rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) under UV-Vis light radiation. In order to elucidate aspects of the degradation mechanism of the organic dyes, some experimental variables were modified such as pH, $O_2$ level in solution, and radiation source. In general, the photocatalytic activity for the degradation of organic dyes followed the sequence IC>OG>rhB>MO.

  • PDF

Ab-initio Study of Hydrogen Permeation though Palladium Membrane (팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산)

  • Cha, Pil-Ryung;Kim, Jin-You;Seok, Hyun-Kwang;Kim, Yu Chan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.