• Title/Summary/Keyword: Mechanical treatment

Search Result 3,945, Processing Time 0.038 seconds

Effect of Plasma Surface Treatment on Electrical and Mechanical Properties of Poly(ethylene terephthalate ) Film (플라즈마 표면처리가 Poly(ethylene terephthalate) 필름의 전기적 및 기계적 성질에 미치는 영향)

  • 임경범;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • In this study the electrical and mechanical characteristics of PET films ore analyzed after plasma surface treatment. After plasma treatment, the surface potential decay, surface potential and dielectric property were evaluated to analyze the electrical insulating property, and the tensile strength was measured as the mechanical characteristic. When plasma treatment was conducted for less than 10 minutes, it was found that the electrical insulating property was improved through evaporation of low molecular weight materials md cleaning of surface. However, for more than 10 minutes, the insulating property of plasma treated PET films was decreased due to excessive discharge energy. The tensile strength was hardly changed by Plasma treatment.

  • PDF

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel (금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

Microstructure and Mechanical Properties of STD11 Steel According to Reheat Treatment (STD11 금형강 재열처리에 따른 미세조직 및 기계적 특성)

  • Park, Gi Yeon;Kwon, Eui Pyo;Heo, Gi Ho
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.139-145
    • /
    • 2022
  • Reheat treatment process of mold is necessary when partial machining of the mold is required, such as shape correction for an existing mold. If defects such as cracks or significant deterioration of mechanical properties of the mold occur during reheat treatment, it is impossible to reuse the mold. In this study, reheat treatment was performed up to two times for STD11 tool steel, and microstructure and mechanical properties according to the reheat treatment were evaluated. Carbide fraction and grain size of prior austenite were almost unchanged after the reheat treatment. Hardness and impact toughness increased significantly after QT treatment, and these properties were maintained without significant change even after the reheat treatment. It is concluded that up to two iterations of reheat treatment does not cause deterioration of properties of STD11 tool steel. Based on these results, a mold for a face-lifted front bumper was manufactured through machining and reheat-treating of an existing mold.

A Study on Mechanical Stress Relleving in a Butt-Welded Pipe (파이프 용접에서 기계적 잔류응력 이완법에 관한 연구)

  • 양영수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • The heat transfer and thermal stress-distribution were numerically determined by using the finite element method for a butt-welded pipe. A mechanical stress relieving(MSR) treatment which has been frequently used in the fabrication of pressure vessels instead of the post weld heat treatment (PWHT) was also simulated to investigate its effect of reducing the residual stress in the welded zone by a mechanical loading.

  • PDF

Studies on Borassus fruit fiber and its composites with Polypropylene

  • Sudhakara, P.;Obi Reddy, K.;Prasad, C. Venkata;Jagadeesh, Dani.;Kim, H.S.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • This paper summarizes the structural characterization of borassus fruit fibers by means of various characterization techniques, optimization of alkali treatment of borassus fruit fine fibers (BFF) with a 5% concentration sodium hydroxide solution for different time intervals (1, 4, 8 and 12 h) and the changes occurring in borassus fibers. This paper also discusses the manufacturing of BFF/PP compotes using MAPP as a compatibilizer in addition to alkali treatment. Composites were evaluated for their mechanical and morphological properties. The tensile strength and modulus, flexural strength and modulus and impact strength were increased for alkali treated/MAPP composites by 4.5%, 17%, 17.2 %, 9% and 10% respectively.

Effects of Two-Step Aging Treatment on the Mechanical Properties of 6061 Al Alloy (A 6061 합금의 기계적 특성에 미치는 2단시효의 영향)

  • Lee, Bo-Bae;Im, Hang-Joon;Jeong, Geol-Chae.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.57-60
    • /
    • 2019
  • The impact of two-step treatment on the mechanical properties of the 6061 Al alloy was investigated by testing the hardness and electrical conductance values. After two-step aging treatment, the hardness and electrical conductivity of the alloy was increased, and if the first aging treatment temperature was lower than the secondary aging treatment temperature, both the hardness and the electrical conductivity were not increased. The higher the temperature of the first aging treatment, the higher the hardness. The temperature of the first aging treatment is $175^{\circ}C$, $150^{\circ}C$, $120^{\circ}C$, and the second is $175^{\circ}C$ and $120^{\circ}C$.

Mechanical Properties Variation of Ti-6Al-4V Alloy by Microstructural Control (α+β 타이타늄 합금의 미세조직 제어에 따른 기계적 특성)

  • Hwang, Yu-Jin;Park, Yang-Kyun;Kim, Chang-Lim;Kim, Jin-Yung;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.220-226
    • /
    • 2016
  • The mechanical properties of Ti-6Al-4V can be improved by microstructural control through the heat treatment in ${\alpha}+{\beta}$ region. The heat treatment was carried out with a variety of heat treatment temperatures and holding times to find the optimized heat treatment conditions and it was analyzed by linking the microstructural characteristics and mechanical properties. The part of ${\beta}$ phase with $10{\pm}2wt%$ vanadium was transformed into ${\alpha}^{{\prime}{\prime}}$ martensite phase after quenched, so the hardness and tensile properties were decreased below $900^{\circ}C$. The higher the heat treatment temperature is, the smaller is the vanadium-rich region, which leads to transformation into hcp ${\alpha}^{\prime}$ martensite above $900^{\circ}C$. The hardness and tensile properties were improved due to the hard ${\alpha}^{\prime}$ martensite. As the holding times were longer, the hardness and tensile properties decreased below $900^{\circ}C$ because of the softening effect by the grain growth. When varying the holding times above $900^{\circ}C$, the change of mechanical properties was slight because the softening effect of grain growth and the strengthening effect of ${\alpha}^{\prime}$ phase were counteractive. Therefore, the best conditions of heat treatment, which is in the range of $920{\sim}960^{\circ}C$, 40 min, WQ, can effectively improve the mechanical properties of Ti-6Al-4V.

Study on the Effects of Surface Treatment and Stitching on the Fracture Behavior of Composite Laminates (계면처리와 스타칭이 복합적층판의 파괴거동에 미치는 영향 연구)

  • Hong, S.Y;Hwang, W;Park, H.C;Han, K.S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.806-815
    • /
    • 1996
  • The interlaminar fracture behavior of woven laminates under static and cyclic loadings has been studied using DCB(double cantilever beam) specimens. The effects of surface treatment and stiching on the fracture behavior of composite laminates are investigated experimentally. Fracture toughness has been improved by surface treatment because the surface treatment can change the fracture mechanism of laminates. SCB(stitched cantilever beam) model has been proposed to quantify the effect of through-thickness resinforcement(stiching) in improving the delamination crack growth resistance. Distributed loads which are transfered to through-thickness fibers can be calculated by the SCB model. And fracture energy increase due to the distributed load can be predicted by a power function of the distributed load. A new parameter agreed well proposed predict fatigue crack growth rate. The predictions using this parameter agreed well with the experimental data.

Effects of Rare Earth Metals Addition and Aging Treatment on the Corrosion Resistance and Mechanical Properties of Super Duplex Stainless Steels

  • 박용수;김순태;이인성;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.309-309
    • /
    • 1999
  • Effects of rare earth metals addition and aging treatment on corrosion resistance and mechanical properties of super duplex stainless steels were investigated using optical/SEM/TEM metallographic examination, an X-ray diffraction test, a potentiodynamic anodic polarization test and a tensile test. The performance of the experimental alloy with 0.32% REM addition was compared with commercial super duplex stainless steel such as SAF 2507 when they were exposed to solution annealing heat treatment and aging treatment. The corrosion resistance in CF environments and mechanical properties of the experimental alloy were found superior to those of the commercial duplex stainless steel. The REM with larger atomic radii than those of Cr, Mo and W may fill vacancies inside the matrix and around the grain boundaries, retarding formation of harmful intermetallic σ and χ phases. In addition, fine REM oxides/oxy-sulfides (1-3㎛) seemed to enhance the retardation effects. With REM additions, strength and ductility increased due to the phase and grain refinement caused by fine REM oxides and oxy-sulfides.