• Title/Summary/Keyword: Mechanical stress analysis

Search Result 3,814, Processing Time 0.033 seconds

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Analysis of Stress Singularity on Ceramics/Metal Bonded Joints (세라믹/금속 접합재에 대한 응력특이성의 해석)

  • Kim, Ki-Seong;Kim, Hui-Song;Chung, Nam-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3058-3067
    • /
    • 1996
  • With increasing use of ceramics/metal bonded joints, It is required to analyze the residual stress distribution and stress singularity at an interface edge for its bonded joints. In this paper, the residual stress distribution and stress singularity index of the ceramics/metal bonded joints were analyzed by using 2-dimensional elastic boundary element method. The variations of residual stress distribution and stress singularity index are studied with changes for the combinations of ceramics/metal bodned joints.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

Optimization of the Gear Tooth Crowning Amount Considering Contact Subsurface Stress (표면아래응력을 고려한 기어이의 크라우닝 최적화에 관한 연구)

  • Lee, Sang-Don;Kim, Jong-Sung;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Gear is an essential component of an automotive. Crowning is used for tooth modification of a gear. The basic concept of gear tooth crowning is to reduce the stress concentration in edge of contact area and appropriate profile modifications can help gears to resist scoring, pitting, and tooth breakage. In this study, a method to determinate spur gear tooth crowning amount to make smooth surface stress and subsurface stress distribution is proposed. This method is based on the contact analysis.

3-Dimensional Stress Analysis for Creep Life Assessment of Y-Piece Under Inner Pressure (내압을 받는 Y 배관의 크리프 수명 평가를 위한 3차원 응력해석)

  • Shin, Kyu-In;Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.22-27
    • /
    • 2007
  • To assess a creep life of elevated temperature plant components, inspections and analysis are usually focused on the critical locations. In this study, stress analysis of a weld region in branch part of Y-piece was conducted by using a three-dimensional finite element analysis. The stresses at the inner and outer surface in the weld part were estimated by using elastic and elastic-creep analysis. For the elastic-creep analysis two kinds of elastic-creep analysis was conducted. The one was assumed that base and weld material properties were same and the other was that material properties were different between base and weld metal. The material properties of base and weld metal were used from reference data. The results showed the stress relaxation level and its location. The result stresses are also compared with elastic stresses.

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

EFFECTS OF PROCESS INDUCED DEFECTS ON THERMAL PERFORMANCE OF FLIP CHIP PACKAGE

  • Park, Joohyuk;Sham, Man-Lung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-47
    • /
    • 2002
  • Heat is always the root of stress acting upon the electronic package, regardless of the heat due to the device itself during operation or working under the adverse environment. Due to the significant mismatch in coefficient of thermal expansion (CTE) and the thermal conductivity (K) of the packaging components, on one hand intensive research has been conducted in order to enhance the device reliability by minimizing the mechanical stressing and deformation within the package. On the other hand the effectiveness of different thermal enhancements are pursued to dissipate the heat to avoid the overheating of the device. However, the interactions between the thermal-mechanical loading has not yet been address fully. in articular when the temperature gradient is considered within the package. To address the interactions between the thermal loading upon the mechanical stressing condition. coupled-field analysis is performed to account the interaction between the thermal and mechanical stress distribution. Furthermore, process induced defects are also incorporated into the analysis to determine the effects on thermal conducting path as well as the mechanical stress distribution. It is concluded that it feasible to consider the thermal gradient within the package accompanied with the mechanical analysis, and the subsequent effects of the inherent defects on the overall structural integrity of the package are discussed.

  • PDF

Load Distribution, Contact and Fatigue Life Analysis for Ball Bearing of Under Moment Load (모멘트 하중을 고려한 볼베어링의 하중분배, 접촉 및 피로수명 해석)

  • Kim, Young-Kuk;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • This study is aimed to predict the fatigue life for bearings under combined radial, thrust and moment load. In order to do this, a series of simulation such as bearing load distribution, initial surface stress, subsurface stress and fatigue analysis is needed. And using the bearing's material fatigue property we can predict fatigue life for ball bearing.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENTS BY MECHANICAL LOADING(I) - EXPERIMENTAL EXAMINATION -

  • Jang, Kyoung-Bok;Yoon, Hun-Sung;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.372-377
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldments by Mechanical Loading(I) -Experimental Examination-

  • Jang, K.B.;Yoon, H.S.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF