• Title/Summary/Keyword: Mechanical servo valve

Search Result 76, Processing Time 0.026 seconds

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Flow Analysis of Servo Valve (Servo valve의 유동해석)

  • Park, Hong-Beom;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1221-1225
    • /
    • 2008
  • In this paper, analysis of pressure and flow characteristics have been performed with a servo valve. A number of servo valve have been used in various applications including the inserting device, bearing transportation and welding machine. By analysis of flow and pressure gradient, technology can be obtained about optimal simulation of high response servo valve for competitiveness. Spool displacement and ratio of inlet/outlet pressure can give big effects to flow and pressure inside servo valve.

  • PDF

Reverse Analysis on a Direct Dive Servo Valve with Electric Feedback (전기 피드백 직동형 서보 밸브에 관한 역 분석)

  • Kim, S.D.;Ahn, H.W
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • Mechanical and electrical properties of a DDV(Direct Drive servo Valve) with electric feedback are analysed via reverse analysis technique in this work. The DDV is disassembled and mechanical parameters, such as spool mass, spring stiffness and port size are identified. The servo amplifier, which is built in the valve, is reversely analysed and the control scheme and gains for several control actions are also identified. The electrical feedback for spool displacement improves much better the valve performance, such as hysteresis and dynamic bandwidth frequency, than an ordinary mechanical feedback valve. Integrating control action with very large gain was adopted in the valve amplifier, and it seemed to give high performance.

Optimization of Design Parameters of a Servo Valve Using the Genetic Algorithm (유전자 알고리즘을 이용한 서어보 밸브의 설계 파라미터 최적화)

  • Um, Tai-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.464-468
    • /
    • 2000
  • This paper presents the optimization technique to select the design parameters of a hydraulic servo valve using the genetic algorithm. The dynamic performance is governed by the design parameters of the servo valve and they may be select by repeated number of simulations such that the desired performance is obtained. Using the genetic algorithm to optimize the design parameters, effective method is suggested. This method can be used for the design of the hydraulic systems as well as the servo valve.

  • PDF

Development of Direct Drive type Pneumatic Servo Valve (직동식 공기압 서보밸브 개발)

  • Kim, Dong-Su;Lee, Won-Hui;Choe, Byeong-O
    • 연구논문집
    • /
    • s.34
    • /
    • pp.69-77
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. Further, the performance of pneumatic servo valve has been verified through an overall performance test on the developed product.

  • PDF

A Study on the Frequency Response Characteristics of High Response Flow Control Servo Valve

  • Seo Jong Soo;Shin You Sik;Chun Young Heung;Jeong Hyo Min;Chung Han Shik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The purpose of this research is to derive the principal design parameters governing the dynamic characteristics of the high response flow control servo valve. For this purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis to a frequency response characteristics were performed. As a result of these analysis, a basis for improvement of a dynamic characteristics of servo valve was arranged.

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System (서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF