• Title/Summary/Keyword: Mechanical sensitivity

Search Result 1,394, Processing Time 0.028 seconds

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

Modeling of PEM Fuel Cell System-Sensitivity Analysis of System Efficiency with Different Main Operating Parameters of Automotive Fuel Cell System (PEM 연료전지 시스템 모델링-자동차용 연료전지 시스템의 주요 작동 변수 변경에 따른 시스템 효율 민감도 분석)

  • KIM, HAN-SANG;KANG, BYUNGGIL;WON, KWONSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.401-410
    • /
    • 2019
  • The operating conditions greatly impact the efficiency and performance of polymer electrolyte membrane (PEM) fuel cell systems and must be properly managed to ensure better performance and efficiency. In particular, small variations in operating conditions interact with each other and affect the performance and efficiency of PEM fuel cell systems. Thus, a systematic study is needed to understand how small changes in operating conditions affect the system performance and efficiency. In this paper, an automotive fuel cell system (including cell stack and balance of plant [BOP]) with a turbo-blower was modeled using MATLAB/Simulink platform and the sensitivity analyses of main operating parameters were performed using the developed system model. Effects of small variations in four main parameters (stack temperature, cathode air stoichiometry, cathode pressure, and cathode relative humidity) on the system efficiency were investigated. The results show that cathode pressure has the greatest potential impact on the sensitivity of fuel cell system efficiency. It is expected that this study can be used as a basic guidance to understand the importance of achieving accurate control of the fuel cell operating conditions for the robust operation of automotive PEM fuel cell systems.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Sensitivity Enhancement of Shadow Moiré Technique for Warpage Measurement of Electronic Packages (반도체 패키지의 굽힘변형 측정을 위한 그림자 무아레의 감도향상 기법연구)

  • Lee, Dong-Sun;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2015
  • Electronic packages consist of various materials, and as temperature changes, warpage occurs because of the difference in coefficient of thermal expansion. Shadow $moir{\acute{e}}$ is non-contact, whole field measurement technique for out-of-plane displacement. However, the technique has low sensitivity above $50{\mu}m/fringe$, it is not adequate for the warpage measurement in some circumstance. In this paper, by applying phase shifting process to the traditional shadow $moir{\acute{e}}$, measurement system having enhanced sensitivity of $12.5{\mu}m/fringe$ is constructed. Considering Talbot effect, the measurement is carried out in the half Talbot area. Shadow fringe pattern having four times enhanced sensitivity is obtained by the image process with four shadow fringes. The measurement technique is applied to the fibered package substrate and coreless package substrate for measuring warpages at room temperature and at about $100^{\circ}C$.

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

The effect of the boss and mass on the sensitivity of the piezoresistive sensor (압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향)

  • Shim, Jae-Joon;Lee, Sung-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.405-410
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness.

  • PDF

Sensitivity Approach of Sequential Sampling Using Adaptive Distance Criterion (적응거리 조건을 이용한 순차적 실험계획의 민감도법)

  • Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1217-1224
    • /
    • 2005
  • To improve the accuracy of a metamodel, additional sample points can be selected by using a specified criterion, which is often called sequential sampling approach. Sequential sampling approach requires small computational cost compared to one-stage optimal sampling. It is also capable of monitoring the process of metamodeling by means of identifying an important design region for approximation and further refining the fidelity in the region. However, the existing critertia such as mean squared error, entropy and maximin distance essentially depend on the distance between previous selected sample points. Therefore, although sufficient sample points are selected, these sequential sampling strategies cannot guarantee the accuracy of metamodel in the nearby optimum points. This is because criteria of the existing sequential sampling approaches are inefficient to approximate extremum and inflection points of original model. In this research, new sequential sampling approach using the sensitivity of metamodel is proposed to reflect the response. Various functions that can represent a variety of features of engineering problems are used to validate the sensitivity approach. In addition to both root mean squared error and maximum error, the error of metamodel at optimum points is tested to access the superiority of the proposed approach. That is, optimum solutions to minimization of metamodel obtained from the proposed approach are compared with those of true functions. For comparison, both mean squared error approach and maximin distance approach are also examined.

Sensitivity Improvement of Shadow Moiré Technique Using LED Light and Deformation Measurement of Electronic Substrate (LED 광을 이용한 그림자 무아레 방법의 감도 향상 및 모바일 전자 기판의 변형 측정)

  • Yang, Heeju;Joo, Jinwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.141-148
    • /
    • 2019
  • Electronic substrates used in a mobile device is composed of various materials, and when the temperature is changed during manufacturing or operating, thermal deformation and stress concentration occur due to the difference in thermal expansion coefficient of each material. The shadow moiré technique is a non-contact optical method that measures shape or out-of-plane displacement over the entire area, but it is necessary to overcome the Talbot effect for high sensitivity applications. In this paper, LED light sources of various wavelengths was used to overcome the Talbot effect caused in the shadow moiré technique. By using the phase shift method, an experimental method to retain the measurement sensitivity within 10 ㎛/fringe was proposed and evaluated, and this method is applied to the thermal deformation measurement of the mobile electronic substrate. In the case of using white light, there were several areas that could not be measured due to the Talbot effect, but in the case of using blue LED light, it was shown that a precise moiré pattern with a sensitivity of 6.25 ㎛/fringe could be obtained in most areas.

A Method of Multidisciplinary Design Optimization via Coordination of Interdisciplinary Design Variables (분야간 연성된 설계변수의 처리를 통한 다분야통합최적설계 방법)

  • Jeong, Hee-Seok;Lee, Hyung-Joo;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.380-385
    • /
    • 2001
  • The paper presents a new multidisciplinary design optimization architecture using optimal sensitivity and coordination of interdisciplinary design variables. Original design problem is decomposed into a number of sub-problems that represent individual engineering analysis. The coupled effects between sub-problems are computed by interdisciplinary design variables. System level coordination is determined by optimal parameter sensitivity calculated by finite difference method. The proposed. MDO strategy is applied to a simplified model of rotorcraft blade design associated with structures and aerodynamic disciplines.

  • PDF

Development of a Structural Optimal Design Code Using Response Surface Method Implemented on a CAD Platform (반응표면법을 이용한 구조물 최적설계 프로그램의 개발)

  • Yeom, Kee-Sun;Huh, Jae-Sung;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.580-585
    • /
    • 2001
  • A response surface method(RSM) is utilized for structural optimization and implemented on a parametric CAD platform. Once an approximation of the performance function is made, no formal design sensitivity analysis is necessary. The approximation gives the designer the sensitivity information and furthermore intuition on the performance functions. The scheme for the design of experiment chosen for the RSM has a large influence on the accuracy of converged solutions and the amount of computation. The D-optimal design criterion as implemented in this paper is found efficient for the structural optimization. The program is developed on a parametric CAD platform and tested using several shape design problems of such as a torque arm and a belt clip. It is observed that the RSM used provides a faster convergence than other approximation methods for design sensitivity.

  • PDF