• Title/Summary/Keyword: Mechanical phenomena

Search Result 1,364, Processing Time 0.022 seconds

Flow Measurement in a Clothes Dryer (의류 건조기 내의 유동 계측)

  • Myung, Hwan-Joo;Yoon, Sang-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.175-178
    • /
    • 2001
  • In a clothes dryer, various thermo-fluid flow phenomena occur such as the heat and mass transfer in the process of removing moisture from clothes, the flow field generated by the fan, and the various flow characteristics from the complex flow paths. The study and understanding of such phenomena is an important factor in increasing the performance of dryers. In this study, as part of a dryer research, the flow field inside a vented dryer was measured using PIV, which the result will be used as the basic material in analyzing the various flow phenomena.

  • PDF

A Study on the Flow with Interfacial Phenomena Using VOF Method

  • Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.9-10
    • /
    • 2006
  • A numerical method for simulating tree surface flows including the surface tension is presented. Numerical scheme is based an a fractional-step method with a finite volume formulation and the interface between liquid and gas is tracked by Volume of Fluid (VOF) method. Piecewise Linear Interface Calculation (PLIC) method is used to reconstruct the interface and the surface tension is considered using a Continuum Surface Force (CSF) model. Several free surface flow phenomena were simulated to show its effectiveness to find such phenomena.

  • PDF

A New Flame-Stabilization Technology for Lean Mixtures

  • Kim, Duck-Jool;Choi, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.426-432
    • /
    • 2000
  • The development of a low-pollution burner is important for saving energy and preserving the environment. A low-pollution burner can be produced by lean-mixture combustion and general combustion technology. The flammable limit of premixed flame is narrower than that of diffusion flame. Producing a lean mixture of fuel results in an effective combustion condition, which in turn produces high load and low pollution. In this study, it was found that the influx of $Q_2$ had an effect on extending the lean flammable limits and flame stabilization in a doubled jet burner. And the flame, consisting of small eddies, can be stabilized by the nozzle neck phenomena.

  • PDF

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

A Study on the Stiffness Locking Phenomena and Eigen Problem in a Curved Beam (곡선보의 강선 과잉 현상과 고유치에 관한 연구)

  • 민옥기;김용우;유동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.310-323
    • /
    • 1990
  • A three-noded, with three degree-of-freedom at each node, in-plane curved beam element is formulated and employed in eigen-analysis of constant curvature beam. The conventional quadratic shape functions used in a three noded C .deg. type curved beam element produce such an undesirable large stiffness that a significant error is introduced in displacements and stresses. These phenomena are called 'Stiffness Locking Phenomena', which result from spurious strain energy due to inappropriate assumptions on independent isoparametric quadratic interpolation functions. Stiffness locking phenomena can be alleviated by using modified interpolation functions which get rid of spurious constraints of conventional interpolation functions. Eigenvalues and their modes as well as displacements and stresses may be locked because they are related to stiffness. Using modified curved beam element in eigenvalue problem of cantilever and arch, the property and performance of modified curved beam element are examined by numerical experimentations. In these eigen-analyses, mass matrices are calculated by using both modified and unmodified curved beam element, are compared with theoretical solutions. These comparisons show that the performance of the modified curved beam element is better than that of the unmodified curved beam element.

J-Groove Technique for Suppressing Various Anomalous Flow Phenomena in Turbomachines

  • Kurokawa, Junichi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • In operating a turbomachine at off-design conditions various instabilities caused by anomalous flow phenomena occur and sometimes lead to the damage of a turbomachine. In order to avoid these phenomena various devices characteristic to each phenomenon have been developed, however they make turbomachines large-sized and cause efficiency drop. The present author has developed a very simple and innovative device, termed "J-groove," of suppressing various anomalous flow phenomena commonly by controlling the angular momentum of the main flow. It has been revealed that J-groove makes an operation of a turbomachine stable in all flow range, causes little efficiency drop, and can be easily applied to an existing machine. Here is reviewed totally the results of suppressing various anomalous flow phenomena in turbomachines.

Study of occurrence of cool air in summer and warm air in winter of Chonbuk Jinan Poonghyeol (전북 진안 풍혈의 여름철 냉풍 및 겨울철 온풍 발생 연구)

  • Kim, Young-Il;Shin, Young-Gy;Seo, Jeong-Ah;Choi, Yong-Don;Song, Tae-Ho;Kang, Chae-Dong;Kim, Seong-Sil;Rho, Jeong-Sun;Jeong, Si-Young;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.879-884
    • /
    • 2006
  • Jinan Poonghyeol in Chonbuk province Is famous for emitting cool air in summer and warm air in winter. Cause for these phenomena is studied by measuring temperature, humidity and air velocity of several locations around Jinan Poonghyeol Temperature variations under the ground are also measured. Analyzing data compiled from July 21, 2005 through May 26, 2006, it is presumed that storage effect of rocks and soil in this area and buoyance effect are the main causes for this mysterious natural air-conditioning phenomena.

  • PDF

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS). (원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구)

  • Song, Dho-In;Choi, Young-Don;Park, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF