• Title/Summary/Keyword: Mechanical forcing

Search Result 106, Processing Time 0.029 seconds

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1234-1240
    • /
    • 2002
  • A new feedback control law is proposed and tested for suppressing the vortex shedding from a circular cylinder in a uniform flow. The lift coefficient ( $C_{L}$) is employed as a feedback control signal and the control forcing is given by a rotational oscillation of the cylinder. The influence of the feedback transfer function on the $C_{L}$ reduction is examined. The main rationale of the feedback control is that a feedback control forcing is imposed at a phase which is located outside the range of lock-on. By applying the feedback control law, $C_{L}$ is reduced significantly. Furthermore, the reduction mechanism of $C_{L}$ is analyzed by showing the vortex formation modes with respect to the forcing phase.e.ase.e.

Numerical Simulation of Turbulent Heat Transfer in Locally-Forced Separated and Reattaching Flow (국소교란에 의한 박리 재부착 유동에서의 난류 열전달 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2001
  • A numerical study was made of heat transfer in locally-forced turbulent separated and reattaching flow over a backward-facing step. The local forcing was given to the flow by means of sinusoidally oscillating jet from a separation line. A Rhee and Sung version of the unsteady $\kappa$-$\varepsilon$-f(sub)u model and the diffusivity tensor heat transfer model were employed. The Reynolds number was fixed at Re(sub)H=33,000 and the forcing frequency was varied in the range 0$\leq$fH/U(sub)$\infty$$\leq$2. The condition of constant heat flux was imposed at the bottom wall. The predicted results were compared and validated with the experimental data of Chun and Sung and Vogel and Eaton. The enhancement of heat transfer in turbulent separated and reattaching flow by local forcing was evaluated and analyzed.

Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds Number Flow Under an Electromagnetic Force

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.363-375
    • /
    • 2002
  • The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a circular cylinder is investigated by computation. Two-dimensional unsteady flow computation for Re=10$^2$is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of circular cylinder cross-flow, leading to reduction of drag.

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

  • Lee, Jae-Yeol;Kim, Nak-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied the flow characteristics of the polymer melt in the injection molding process with ultrasonic vibration by using the numerical analysis. To minimize the error between the experimental data and numerical result, we presented a methodology using the design of experiments and the response surface method for reverse engineering. This methodology can be applied to various fields to obtain a valid and accurate numerical analysis. Ultrasonic vibration is generally applied between an extruder and the entrance of a mold for improvement the flow rate in injection molding. In comparison with the general ultrasonic process, the mode shape of the mold must be also considered when the ultrasonic vibration is applied on the mold. The mode shape is defined as the periodic and spatial deformation of the structure owing to the effect of the vibration, and it varies greatly according to vibration conditions such as the forcing frequency. Therefore, we considered new index and found the forcing frequency for obtaining the highest flow rate within the range from 20 to 60 kHz on the basis of the index. Ultimately, we presented the methodology for not only obtaining a valid and accurate numerical analysis, but also for finding the forcing frequency to obtain the highest flow rate in injection molding using ultrasonic vibration.

A Study on the Utrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production - By the Pressure Sensor Gage - (수소 연료 생산의 효율향상을 위한 초음파 응용에 관한 연구 - 압력센서 계기에 의한 -)

  • Song, Min-Guen;Son, Seung-Woo;Ju, Eun-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1229-1237
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The ultrasonic effects the decrease of the overpotential in a water electrolysis. A study on the overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on the principle. A pressure sensor system by a new idea is developed and applied. Solutions are 4 kinds of KOH concentration such as 0%, 10%, 20%, and 30%. Two frequency bands of the ultrasonic transducer are 28kHz and 2MHz. The directions of ultrasonic forcing are the vertical direction and the horizontal direction. The temperatures are two states, i.e., no constant and constant. Experiments are carried out sequentially in order in three cases of no ultrasonic forcing, ultrasonic forcing, and ultrasonic discontinution. In results, it is clarified that the ultrasonic effects the decrease of overpotential to elevate the efficiency of hydrogen production.

Active Control of Impinging Jets Using Bifurcating Excitations (분기 가진을 통한 충돌제트 능동 제어 연구)

  • Kim, Jungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.525-530
    • /
    • 2013
  • The objective of the present study is to investigate the heat transfer characteristics of turbulent impinging jets with bifurcating excitations. Bifurcating excitations use the dual mode, dual frequency forcing, where an axial forcing frequency is equal to double the helical forcing frequency. Under the bifurcating excitation, the heat transfer significantly increases in one plane (bifurcating plane), while nearly no heat transfer occurs in the perpendicular plane (bisecting plane). This result is closely associated with the change in the vortical structures caused by the excitation.

A Study on the Spray Characteristics of the Cold-Fog Spray with Ultrasonic Forcing (초음파적용 상온연무기의 분무특성에 관한 연구)

  • Song Min-Geun;Lee Kyung-Youl;Son Sung-Woo;La Woo-Jung;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.299-302
    • /
    • 2002
  • Characteristics of the twin fluid spray with ultrasonic forcing are examined in order to obtain the high efficiency of cold fog spray of the automatic pest control machine which has been widely used for the equipment cultivation recently. An electrostrictive vibrator of PZT BLT and a magnetostrictive vibrator of ${\pi}type$ with 28 kHz are applied as the ultrasonic transducer. All experiments are made and observed in 4 methods of spray ; a conventional spray method without ultrasonic forcing, an indirect vibration method with ultrasonic forcing, an improving duality method by ultrasonic forced within liquid, and a combined use method with both of the indirect vibration method and the improving quality method. In results, It was clarified that the ultrasonic effects the atomization of spray droplets and its efficiency is about $10{\%}$ and especially much more in the case of the combined use method.

  • PDF

Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구)

  • Lee Jung-Yeop;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.