Browse > Article
http://dx.doi.org/10.7735/ksmte.2013.22.3.525

Active Control of Impinging Jets Using Bifurcating Excitations  

Kim, Jungwoo (Seoul National University of Science and Technology, Department of Mechanical System Design)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.22, no.3_1spc, 2013 , pp. 525-530 More about this Journal
Abstract
The objective of the present study is to investigate the heat transfer characteristics of turbulent impinging jets with bifurcating excitations. Bifurcating excitations use the dual mode, dual frequency forcing, where an axial forcing frequency is equal to double the helical forcing frequency. Under the bifurcating excitation, the heat transfer significantly increases in one plane (bifurcating plane), while nearly no heat transfer occurs in the perpendicular plane (bisecting plane). This result is closely associated with the change in the vortical structures caused by the excitation.
Keywords
Impinging jet; Heat transfer characteristics; Bifurcating excitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moin, P., Squires, K. Cabot, W., Lee, S., 1991, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3 2746-2757.   DOI
2 White, F. M., 1994, Fluid Mechanics, McGraw-Hill Co., Singapore.
3 Akselvoll, K., Moin, P., 1996, An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries, J. Comput. Phys., 125 454-463.   DOI   ScienceOn
4 Koren, B., 1993, A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhill, C.B., Koren, B. (Eds.), Numerical methods for advection-diffusion problems, Notes on numerical fluid mechanics, 45, Vieweg, Braunschweig, 117-138.
5 Cho, S. K., Yoo, J. Y.. Choi, H., 2000, Resonance in axisymmetric jet under controlled helical, fundamental, and axisymmetric subharmonic forcing, AIAA J., 38 434-441.   DOI   ScienceOn
6 Danaila, I., Boersma, B. J., 2000, Direct numerical simulation of bifurcating jet, Phys. Fluids, 12 1255-1257.   DOI   ScienceOn
7 da Silva, C. B., Metais, O., 2002, Vortex control of bifurcating jets: a numerical study, Phys. Fluids, 14 3798-3819.   DOI   ScienceOn
8 Martin, H., 1977, Heat and mass between impinging gas jets and solid surfaces, Advances in Heat Transfer, 13 1-60.   DOI
9 Jambunathan, K., Lai, E., Moss, M. A., Button, B. L., 1992, A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 106-115.   DOI   ScienceOn
10 Gardon, R., Arkifirat, J. C., 1965, The role of turbulence in determining the heat transfer characteristics of impinging jet, Int. J. Heat Mass Transfer, 8 1261-1272.   DOI   ScienceOn
11 Lee, J., Lee, S.-J., 2000, The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet, Int. J. Heat Mass Transfer, 43 555-575.   DOI   ScienceOn
12 Lytle, D., Webb, B. W., 1994, Air jet impinging heat transfer at low nozzle-plate spacings, Int. J. Heat Mass Transfer, 37 1687-1697.   DOI   ScienceOn
13 Lee, D., Grief, R., Lee, S. J., Lee, J. H., 1995, Heat transfer from a flat plate to a fully developed axisymmetric impinging jet, J. Heat Transfer, 117 772-776.   DOI   ScienceOn
14 Behnia, M., Parneix, S., Durbin, P. A., 1998, Prediction of heat transfer in an axisymmetric turbulent impinging on a flat plate, Int. J. Heat Mass Transfer, 41 1845-1855.   DOI   ScienceOn
15 Park, T., Sung, H., 2001, Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22 10-18.   DOI   ScienceOn
16 Olsson, M., Fuchs, L., 1998, Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10 476-486.   DOI   ScienceOn
17 Hadziabdic, M., Hanjalic, K., 2008, Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech., 596 221-260.
18 Lee, M., Reynolds, W. C., 1985, Bifurcating and blooming jets, Report No. TF-22, Department of Mechanical Engineering, Stanford University, USA.
19 Parekh, D., Leonard, A., Reynolds, W. C., 1988, Bifurcating jets at high Reynolds numbers, Report No. TF-35, Department of Mechanical Engineering, Stanford University, USA.
20 Reynolds, W. C., Parekh, D. E., Juvet, P. J. D., Lee, M. J. D., 2003, Bifurcating and bisecting jets, Annu. Rev. Fluid Mech., 35 293-315.
21 Germano, W. K., Piomeilli, U., Moin, P., Cabot, W. H., 1991, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3 1760-1765.   DOI
22 Lilly, D. K., 1992, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4 633-635.   DOI