• Title/Summary/Keyword: Mechanical fault

Search Result 518, Processing Time 0.031 seconds

Diagnosis Method for Stator-Faults in Induction Motor using Park's Vector Pattern and Convolution Neural Network (Park's Vector 패턴과 CNN을 이용한 유도전동기 고정자 고장진단방법)

  • Goh, Yeong-Jin;Kim, Gwi-Nam;Kim, YongHyeon;Lee, Buhm;Kim, Kyoung-Min
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.883-889
    • /
    • 2020
  • In this paper, we propose a method to use PV(Park's Vector) pattern for inductive motor stator fault diagnosis using CNN(Convolution Neural Network). The conventional CNN based fault diagnosis method was performed by imaging three-phase currents, but this method was troublesome to perform normalization by artificially setting the starting point and phase of current. However, when using PV pattern, the problem of normalization could be solved because the 3-phase current shows a certain circular pattern. In addition, the proposed method is proved to be superior in the accuracy of CNN by 18.18[%] compared to the previous current data image due to the autonomic normalization.

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals (반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰)

  • ;;Hitoshii ISHII
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

Development of Multi LED type Door Status Indication Lamp for rolling stock (Multi LED를 이용한 철도차량용 Door Status Indication Lamp)

  • Seo, Bum-Won;Choi, Jae-Sung;Kim, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1668-1674
    • /
    • 2011
  • Door Inside Lamp of railway rolling stock is installed on interior of the side doors and illuminated at door opening and closing, isolation and fault. So drivers or passengers can notice the door status visually. In the past, a single color or Bi-color LED Lamps have been using and one ~ multiple lamp was used to implement the feature according to client's requirements. (Example: Total of between 2 and 4 lamps are required for the Warning / Emergency operation / Isolation / Fault.) However these design is not easy to apply if there is the mounting space restrictions and the problems such as rising costs can be caused. In addition, it has vulnerability from point of view aesthetic aspects. Therefore the lamp type has been required that has small size and number of colors in order to resolve these problems. Recently multi LED type door status indication lamp have been developed that can meet the requirements and this lamp has been applied in many railway projects. In this study, I'll introduce the general characteristics and mechanical & electrical characteristics of multi LED type door status indication lamp to help development of this kinds of lamp.

  • PDF

Development of Multi LED type Door Status Indication Lamp for rolling stock (Multi LED를 이용한 철도차량용 Door Status Indication Lamp)

  • Seo, Bum-Won;Choi, Jae-Sung;Kim, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1466-1472
    • /
    • 2011
  • Door Inside Lamp of railway rolling stock is installed on interior of the side doors and illuminated at door opening and closing, isolation and fault. So drivers or passengers can notice the door status visually. In the past, a single color or Bi-color LED Lamps have been using and one ~ multiple lamp was used to implement the feature according to client's requirements. (Example: Total of between 2 and 4 lamps are required for the Warning / Emergency operation / Isolation / Fault.) However these design is not easy to apply if there is the mounting space restrictions and the problems such as rising costs can be caused. In addition, it has vulnerability from point of view aesthetic aspects. Therefore the lamp type has been required that has small size and number of colors in order to resolve these problems. Recently multi LED type door status indication lamp have been developed that can meet the requirements and this lamp has been applied in many railway projects. In this study, I'll introduce the general characteristics and mechanical & electrical characteristics of multi LED type door status indication lamp to help development of this kinds of lamp.

  • PDF

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

The comparative risk assessment of LNG tank designs using FTA (고장수목분석법을 이용한 액화천연가스 저장탱크 형식별 위험성 비교 평가)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.48-54
    • /
    • 2012
  • Building above-ground membrane LNG storage tanks have been recently actively reviewed because they have advantages in ease of large capacity, environmental friendliness, and low possibility of gas leakage of the inner tank (slow increase of leakage speed). In this paper, the safety of membrane LNG storage tanks was ensured through comparative risk assessment of full-containment LNG storage tanks and membrane LNG storage tanks by using Fault Tree Analysis (FTA). Risk assessment results showed that both types of tanks have very similar level of risk except for the membrane storage tanks without additional safety equipments (early model).

Development of A Test Apparatus for Control Rod Drive Mechanism in Nuclear Power Plants

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Kim, Seog-Joo;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1732-1735
    • /
    • 2003
  • In this paper, a DSP-based test apparatus for Control Rod Drive Mechanism (CRDM) that is used in nuclear power plants is described. Using this apparatus, we can test the mechanical and electrical characteristics of CRDM and obtain some information about how to improve the CRDM further and how to design a power controller to actuate the CRDM. Since firing angles can be directly applied to the gate-drive circuits of thyristors in the power controller by using this apparatus, the maximum and minimum values of firing angles within available limits are easily measured. Also step-current inputs help us investigate each coil's response characteristics. Therefore, we can easily find the range of control gains which enables a stable CRDM operation in insertion and withdrawal actions at high speed, mid speed, and low speed. Since this apparatus has a test mode in which an insertion or withdrawal action is divided into several phases so that the current command for each phase is given step by step, we may judge whether the CRDM works as expected or not. We also describe a fault detection capability of the test apparatus for the power controller by using discrete Fourier transform.

  • PDF

Cooling Characteristics of Sub-cooled Nitrogen Cryogenic System for 6.6kV/200A Inductive Fault Current Limiter

  • Hyoungku Kang;Bae, Duck-Kweon;Ahn, Min-Cheol;Kim, Hyung-Jin;Chang, Ho-Myung;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.57-61
    • /
    • 2003
  • In this investigation, the 6.6kV/200A Inductive Superconducting Fault Current Limiter (SFCL) was designed and fabricated. The type of DC reactor for Inductive SFCL was determined as solenoid type during the period of $1${st}$ year research. The 5 bobbins for DC reactor were fabricated and each bobbin was wound with 4 stacked High-Tc superconducting (HTS) tapes and the 5 bobbins were connected in series. The critical current and inductance of DC reactor were simulated by Finite Element method (FEM) and compared with the measured results. The characteristics of DC reactor were enhanced in sub-cooled nitrogen system rather than in liquid nitrogen system. The procedures to accomplish the sub-cooled nitrogen system and the experimental results were introduced in detail. Moreover, the design of sub-cooled nitrogen cryogenic system for next year research was introduced in brief.