• 제목/요약/키워드: Mechanical degradation

Search Result 1,265, Processing Time 0.024 seconds

Preliminary investigation of Ic homogeneity along the longitudinal direction of YBCO coated conductor tape under tensile loading

  • Dizon, J.R.C.;Oh, S.S.;Sim, K.D.;Shin, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.24-28
    • /
    • 2013
  • In this study, the homogeneity of critical current, $I_c$, along the lengthwise direction in the coated conductor (CC) tape under uniaxial tension was investigated using a multiple voltage tap configuration. Initially, a gradual and homogeneous $I_c$ degradation occurred in all subsections of the tape up to a certain strain value. This was followed by an abrupt $I_c$ degradation in some subsections, which caused scattering in $I_c$ values along the length with increasing tension strain. The $I_c$ degradation behaviour was also explained through n-value as well as microstructure analyses. Subsections showed $I_c$ scattering corresponding to damaged areas of the CC tape revealed that transverse cracks were distributed throughout the gauge length. This homogeneous $I_c$ degradation behaviour under tension is similar with the case under torsion strain but different with the case under hard bending which were previously reported. This behaviour is also different with the case using Bi-2223 HTS tapes under tension strain.

Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header (장기 사용 보일러 헤더의 열화거동 평가에 관한 연구)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.

Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation ($^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

Assessing the long-term durability and degradation of rocks under freezing-thawing cycles

  • Seyed Zanyar Seyed Mousavi;Mohammad Rezaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.51-67
    • /
    • 2023
  • In this research, the degradation rate of physical properties of the Angouran pit bedrock (calc-schist) is first investigated under the specific numbers of freeze-thaw (F-T) cycles. Then, the durability of calc-schist specimens against the F-T cycle number (N) is examined considering the mechanical parameters, and using the decay function and half-time techniques. For this purpose, point load strength (IS(50)), second durability index (Id2), Brazilian tensile strength (BTS), and compressive (VP) and shear (VS) wave velocities of calc-schist specimens are measured after 0, 7, 15, 40, and 75 N. For comparing the degradation rate of mechanical properties of available rock types on the Angouran mine walls, these tests are also carried out on the limestone and amphibolite schist specimens beside the calc-schist. According to test results, the exponential regression models are developed between the mechanical parameters of rock specimen's and N variable. Also, the long-term durability of each rock type versus N is studied using the decay function and half-time techniques. Results indicated that the degradation rate differs for the above rock types in which amphibolite schist and calc-schist specimens have the highest and least resistance against the N, respectively. The obtained results from this study can play a key role in the optimal design of the mine's final walls.

Evaluation of Material Degradation of 1Cr-1Mo-0.25V steel using Ball Indentation Method

  • Seok, Chang-Sung;Kim, Jeong-Pyo;Koo, Jae-Mean
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1730-1737
    • /
    • 2004
  • The BI (Ball Indentation) method has the potential to assess the mechanical properties and to replace conventional fracture tests. In this study, the effect of aging on mechanical behavior of 1Cr-1Mo-0.25V steels procured by isothermal aging heat-treatment at four different aging times in the range of 0~1820 hours at 630$^{\circ}C$, were investigated using BI system.

Mechanical Degradation of Polystyrene by Mastication (II). Basic Studies on Recovery of Waste Polystyrene (Mastication에 依한 Polystyrene의 機械的 分裂 (第2報). 廢 Polystyrene 樹脂의 再生利用에 關한 基礎的 硏究)

  • Ki-Hyun Chung;Kook Joong Kim;Sang Dae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.386-393
    • /
    • 1975
  • Polystyrene and polystyrene blended with SBR were subjected to the mechanical degradation by roll mastication. The results obtained are as follows. 1. For the polystyrene which is blended with SBR, the overall shape of the molecular weight distribution curve moves from the higher molecular weight portion to the lower molecular weight portion, becomes narrower in breadth, and its peak becomes higher as the degradation proceeds. The final molecular weight distribution exhibits a relative uniformity. This is due to the fact that only the polymer molecules with the high molecular weight consisted in original polystyrene are degraded mechanically and produced the polymer molecules with the low molecular weight. 2. The scission number of polystyrene chains increases with mastication time, and the number of degraded polymer chains produced when the polymer is masticated for 100 minutes at 140, 150 and $160^{\circ}C$ are $2.36{\times}10^{20},\;1.76{\times}10^{20}\;and\;1.52{\times}10^{20}$, respectively. 3. The rate of the degradation of polystyrene decreases with the mastication temperature. The activation energy is found to have the negative value, -8.7 kcal/mole. Therefore it is indicated that the mechanical degradation is a chemical process of which the activation energy is supplied mechanically.

  • PDF

The Analysis of Degradation Phenomena in Piezoelectric Ceramics by Equivalent Circuit Analysis Method (PZT 세라믹스의 등가 정수 측정에 의한 압전열화 기구 해석)

  • 손준호;정우환;김정주;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.383-389
    • /
    • 1991
  • The analysis of degradation phenomena of poled PZT ceramics was investigated relate to piezoelectric equivalent circuit elements. As a result, in the case of impressed mechanical shock on poled specimen of degradation phenomena was explained by domain rearrangement, and in the case of left in air, degradation phenomena was explained by space charge diffusion.

  • PDF

The Effects of Polymer Degradation on the Drag Reduction in CWM Transport (CWM 관수송의 저항 감소현상에 있어서 고분자첨가제의 퇴화 영향에 관한 연구)

  • 송창환;김종보;김인석;최형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1908-1914
    • /
    • 1992
  • A significant drag reduction in the turbulent flow of CWM(coal Water Mixture) adding minute amounts of high molecular weight polymer additives has been obtained and it was compared with pure CWM.However, the rate of drag reduction could come down with flow time, which is caused by polymer degradation, The rate of drag reduction and polymer degradation is affected by polymer type, concentration, molecular weight, and flow velocity. In the present investigation, these important parameters were evaluated for their influences on polymer degradation in order to find out stable conditions for CWM transportation with time. It was necessary to determine the more effective type of polymer additives to guarantee the optimum conditions for CWM transport. Experiments were undertaken with a test section of pipe diameter 9.8mm and pipe length 3500mm(L/D=357) in a closed loop, and polyacrylamide and polyetylene oxide were utilized as polymer additives. The tests were carried out under the conditions of 200, 400, 700ppm of polymer concentrations. CWM concentrations utilized were 5% and 10% with flow velocities of 4.9m/s and 6.1m/s. Experimental data show that polyehylene oxide degraded faster than polyacrylamide in CWM transport, and polyacryamide is considered to be a more effective candidate as additive for long time-CWM transport. Polymer degradation is also found to be more likely at lower polymer concentrations, at higher flow velocities, and higher CWM concentrations.

A Study on the Evaluation of Material Degradation for 1Cr-1Mo-0.25V Steel using Linear and Nonlinear Ultrasonics (선형 및 비선형 초음파를 이용한 1Cr-1Mo-0.25V의 열화평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung;Song, Sung-Jin;Kim, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.549-555
    • /
    • 2001
  • Ultrasonic is a powerful nondestructive technique for getting the information of flaws and material properties of in-services facilities. We prepared 4 different 1Cr-1Mo-0.25V specimens by Isothermal aging at $630^{\circ}C$. We evaluated material degradation using ultrasonic parameters, velocity, attenuation and harmonic generation. Attenuation and nonlinear parameter derived from harmonic generation efficiency increased as degradation. Especially the second harmonic of the fundamental wave in the 1,820h aging material was observed to exceed 20dB more than that in the un-aged material. But velocity remained virtually the same for all specimens. We concluded that nonlinear parameter and attenuation are sensitive to material degradation, but velocity was not. It'll be a good parameter for evaluating the material degradation.

  • PDF