• Title/Summary/Keyword: Mechanical deflection

Search Result 881, Processing Time 0.028 seconds

Analysis of Density Distribution for Unsteady Butane Flow Using Three-Dimensional Digital Speckle Tomography

  • Ko, Han-Seo;Park, Kwang-Hee;Kim, Yong-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1213-1221
    • /
    • 2004
  • Transient and asymmetric density distributions have been investigated by three-dimensional digital speckle tomography. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and transient. The speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields have been reconstructed from the deflection angles by a real-time multiplicative algebraic reconstruction technique (MART).

The Effect of the Gap of Spline on the Deflection of Propeller Shaft (스플라인의 공차가 프로펠러 샤프트의 처짐에 미치는 영향)

  • Han, Dong-Seop;Lee, Seong-Wook;Kim, Yong;Han, Geun-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.172-174
    • /
    • 2007
  • A propeller shaft is the device which is used to transmit the power between two shafts in a vehicles, an industrial machinery, etc. The end of spline is worm due to the deflection of the propeller shaft, and a lifetime of it is reduced, because it for industrial machinery has the length of 2,500 mm, the weight of $300\;kg_{f},$ and the sliding distance of $\pm250\;mm.$ Accordingly in this study we analyzed the effect of the gap of spline on the deflection of a propeller shaft carrying out the finite element analysis, in order to determine the proper gap of spline to minimize the deflection of it. We adopt 10-kinds of gap of spline from 0.05 mm to 0.5 mm at interval of 0.05 mm as the design parameter for the finite element analysis and the centrifugal force as the load condition.

  • PDF

Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube (중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발)

  • Shim, Do-Jun;Huh, Nam-Su;Park, Bo-Kyu;Chang, Yoon-Suk;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF

Study on Analysis of Optical Deflection of Laser Scattering Based on Rayleigh Criterion for Crystalline Silicon Wafer in Solar Cell (태양전지용 결정질 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란의 광편향 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, optical deflection of laser scattering has been investigated based on Rayleigh criterion for crystalline silicon wafer in solar cell. A laser scattering mechanism is newly designed using light scattering properties in silicon wafer. Intensity distributions of laser scattering are different, depending on the incident angle of laser computed from Rayleigh criterion. In case of the incident angle satisfied with the criterion, they are asymmetric. Also, their specular reflection angle is shifted to unpredicted ones. These phenomena are in accordance with previous theories of laser scattering. The optical deflection of laser scattering is experimentally identified with the designed laser scattering mechanism. Its mathematical model is presented from the geometric relationship of laser scattering. It is shown that the optical deflection of laser scattering agree with the presented model, exclusive of grazing angles which is satisfied with Rayleigh criterion.

A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

The Static Performance Analyses of Air Foil Journal Bearings Considering Three-Dimensional Structure of Bump Foil (범프포일의 3차원 형상을 고려한 공기 포일저널베어링의 정특성 해석)

  • Lee, Dong-Hyun;Kim, Young-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.256-262
    • /
    • 2005
  • The calculation of bump foil deflection is very important to predict the performance of foil bearings more accurately, because the foil bearings consist of top foil and its elastic foundation usually called bump foil. For the purpose of this, a finite element model considering 3-dimensional structure of the bump foil is developed to calculate the deflection of inter-connected bump. The results obtained from the suggested model are compared and analyzed with those from the previous proposed deflection models. In addition, load capacity of the foil bearings is analyzed by using this model.

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

Design of a Geometric Adaptive Straightness Controller for Shaft Straightening Process (축교정을 위한 기하학적 진직도 적응제어기 설계)

  • Kim, Seung-Cheol;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2451-2460
    • /
    • 2000
  • In order to minimize straightness error of deflected shaft, a geometric adaptive straightness controller system is studied. A multi-step straightening and a three-point bending process have been developed for the geometric adaptive straightness controller. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and real-time hydraulic control methodology are studied for the three-point bending process. By deflection pattern analysis and fuzzy self-learning method in the multi-step straightening process, a straightening point and direction, desired permanent deflection and supporting condition are determined. An automatic straightening machine has been fabricated for rack bars by using the developed ideas. Validity of the proposed system is verified through experiments.