• Title/Summary/Keyword: Mechanical calibration

Search Result 501, Processing Time 0.028 seconds

Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration

  • Yun, Seok;Kim, Deok-Ho;Kim, Byung-Kyu;Lee, Sang-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2451-2456
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an egg is currently performed by a skilled operator, relying only on visual feedback information. Massive load of various micro injection of either genes, fluid or cells in the postgenomic era calls a more reliable and automatic micro injection system that can test hundreds of genes or cell types at a single experiment. We initiated to study cellular force sensing in zebrafish eggs as the first step for the development of a more controllable micro injection system by any inexperienced operator. Zebrafish eggs at different developmental stages were collected and an integrated biomanipulation system was employed to measure cellular force during penetrating the egg envelope, the chorion. First of all, the biomanipulation system integrated with cellular force sensing instrument is implemented to measure the penetration force of cell membranes and characterize mechanical properties of zebrafish embryo cells. Furthermore, implementation of cellular force sensing system and calibration are presented. Finally, the cellular force sensing of penetrating cell membranes at each developmental stages was experimentally performed. The results demonstrated that the biomanipulation system with force sensing capability can measure cellular force at real-time while the injection operation is undergoing. The magnitude of the measured force was in the range of several hundreds of uN. The precise real-time measurement should provide the first step forwards for the development of an automatic and reliable injection system of various materials into biological cells.

  • PDF

Development of Fingerprints for Quality Control of Acorus species by Gas Chromatography/Mass Spectrometry

  • Yu, Se-Mi;Kim, Eun-Kyung;Lee, Je-Hyun;Lee, Kang-Ro;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1547-1553
    • /
    • 2011
  • An effective analytical method of gas chromatography/mass spectrometry (GC/MS) was developed for the rapid determination of essential oils in the crude extract of Acorus species (Acorus gramineus, Acorus tatarinowii, and Acorus calamus). Major phenypropanoids (${\beta}$,${\alpha}$-asarone isomers, euasarone, and methyleugenol) and ${\beta}$-caryophyllene in Acorus species were used as marker compounds and determined for the quality control of herbal medicines. To extract marker compounds, various extraction techniques such as solvent immersion, mechanical shaking, and sonication were compared, and the greatest efficiency was observed with sonication extraction using petroleum ether. The dynamic range of the GC/MS method depended on the specific analyte; acceptable quantification was obtained between 10 and 2000 ${\mu}g/mL$ for ${\beta}$-asarone, 10 and 500 ${\mu}g/mL$ for ${\alpha}$-asarone, 10 and 200 ${\mu}g/mL$ for methyleugenol, and between 5 and 100 ${\mu}g/mL$ for ${\beta}$-caryophyllene. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision, with a relative standard deviation < 10%. Overall limits of detection were approximately 0.34-0.83 ${\mu}g/mL$, with a standard deviation (${\sigma}$)-to-calibration slope (s) ratio (${\sigma}$/s) of 3. The limit of quantitation in our experiments was approximately 1.13-3.20 ${\mu}g/mL$ at a ${\sigma}$/s of 10. On the basement of method validation, 20 samples of Acorus species collected from markets in Korea were monitored for the quality control. In addition, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were performed on the analytical data of 20 different Acorus species samples in order to classify samples that were collected from different regions.

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Real-time 3D Calibration for Pose Computation in Extended Environments (확장 환경에서의 위치 및 방향 정보 계산을 위한 실시간 3차원 위치 계산)

  • Park, Jun;Jang, Jun-Ho;Kwon, Jang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.455-461
    • /
    • 2003
  • In Computer Vision-based pose computation systems, markers are often used as reference points: artificially-designed (to maximize the efficiency in detection) markers are installed in the environment and their positions are measured using probing devices such as mechanical digitizers and laser range finders. The camera (or the user) pose is computed based on three or more markers 3D positions and the 2D positions in the image. However, in extended environments, it is impractical to install enough number of markers to be detected by the camera. Instead, natural features, if detected and tracked efficiently, can be used as reference points. These natural features 3D positions need to be measured before they can be used as reference points. In this paper, technologies of utilizing natural features are introduced for pose computation or refinement in extended environments.

  • PDF

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

Terminal Homing Guidance of Tactical Missiles with Strapdown Seekers Based on an Unscented Kalman Filter (스트랩다운 탐색기를 장착한 전술유도탄의 UKF 기반 종말호밍 유도)

  • Oh, Seung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.221-227
    • /
    • 2010
  • Recent development in seeker technology explores a new seeker design in which, with larger field-of-view (FOV), optical parts are strapped down to a body (hence, called as a body-fixed seeker or a strapdown seeker). This design has several advantages such as comparatively easier maintenance and calibration by removing complex mechanical moving parts, increasing reliability, and cost savings. On the other hand, the strapdown seeker involves difficulties in implementing guidance laws since it does not directly provide inertial LOS rates. Instead, information for generating guidance commands should be extracted by estimating missile/target relative motion utilizing target images on the image plane of a strapdown seeker. In this research, a new framework based on an unscented Kalman filter is developed for estimating missile/target relative motion on the simplified assumption of a point source target. Performance of a terminal guidance algorithm, in which guidance command is generated based on the estimated relative motion, is demonstrated by a missile/target engagement simulation.