• Title/Summary/Keyword: Mechanical behaviour

Search Result 694, Processing Time 0.029 seconds

Simplified model to study the dynamic behaviour of a bolted joint and its self loosening

  • Ksentini, Olfa;Combes, Bertrand;Abbes, Mohamed Slim;Daidie, Alain;Haddar, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.639-654
    • /
    • 2015
  • Bolted joints are essential elements of mechanical structures and metal constructions. Although their static behaviour is fairly well known, their dynamic behaviour due to shocks and vibrations has been less studied, because of the large size of the finite element models needed for a detailed simulation. This work presents four different simplified models suitable for studying the dynamic behaviour of an elementary bolted joint. Three of them include contact elements to allow sliding of the screw head and the nut on the assembled parts, and the last one allows rotation between screw and nut. A penalty approach based on the Coulomb friction model is used to model contact. The results show that these models effectively represent the dynamic behaviour, with different accuracy depending on the model details. The last model simulates the self loosening of a bolt subjected to transversal vibrations.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.

Perforated TWCF steel beam-columns: European design alternatives

  • Baldassino, Nadia;Bernardi, Martina;Bernuzzi, Claudio;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.701-715
    • /
    • 2020
  • Steel storage racks are lightweight structures, made of thin-walled cold-formed members, whose behaviour is remarkably influenced by local, distortional and overall buckling phenomena, frequently mutually combined. In addition, the need of an easy and rapid erection and reconfiguration of the skeleton frame usually entails the presence of regular perforations along the length of the vertical elements (uprights). Holes and slots strongly influence their behaviour, whose prediction is however of paramount importance to guarantee an efficient design and a safe use of racks. This paper focuses on the behaviour of isolated uprights subjected to both axial load and bending moments, differing for the cross-section geometry and for the regular perforation systems. According to the European standards for routine design, four alternatives to evaluate the bending moment-axial load resisting domains are shortly discussed and critically compared in terms of member load carrying capacity.

Experimental investigation of the behaviour of a steel sub-frame under a natural fire

  • Santiago, Aldina;Simoes da Silva, Luis;Vaz, Gilberto;Vila Real, Paulo;Lopes, Antonio Gameiro
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.243-264
    • /
    • 2008
  • This paper details a testing facility ("NATURAL FIRE FACILITY") that allows closely-controlled experimental testing on full-scale sub-frames while reproducing the spatially transient temperature conditions measured in real fires. Using this test facility, an experimental investigation of six steel sub-frames under a natural fire was carried out at the Department of Civil Engineering of the University of Coimbra. The main objective of these tests was to provide insight into the influence of these connection types on the behaviour of steel sub-structures under fire. The experimental layout is defined by two thermally insulated HEA300 columns and an unprotected IPE300 beam with 5.7 m span, supporting a composite concrete slab. Beam-to-column connections are representative of the most common joint type used on buildings: welded joints and extended, flush and partial depth plate. Finally, the available results are presented and discussed: evolution of the steel temperature; development of displacements and local deformations and failure modes on the joints zone.

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Study on Fatigue Analysis of DCB Specimen Bonded (접착제로 접합된 DCB 시험편의 피로 해석에 관한 연구)

  • Choi, Hae-Kyu;Hong, Soon-Jik;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2865-2871
    • /
    • 2012
  • In this study, the fracture behaviour of DCB(double cantilever beam) specimen with aluminum foam composite materials is analyzed by simulation. By comparing the analysis results with two models of 25 mm and 40 mm, the model with thickness of 25 mm is weaker than 40 mm at fatigue life and damage. Two models are unfavorable at 'SAE Transmission' in case of nonuniform fatigue load and rainflow matrices are weakest at 'SAE Bracket history'. In damage matrices, the model with 25 mm of thickness is weaker than the model with 40 mm of thickness but the model with 40 mm of thickness relative damage possibility is higher than in case of 25 mm. As two models are safest at 'SAE Transmission', the relative damage becomes the lowest value from 1.1 to 1.8 %. The mechanical property can be investigated by applying these analyses results with the real composite structure bonded with adhesive and analyzing fracture behaviour.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.