• 제목/요약/키워드: Mechanical alloying Method

검색결과 107건 처리시간 0.028초

Microstructure and Properties of High Nitrogen Sintered Stainless Steel

  • Pieczonka, Tadeusz;Stoytchev, Marin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.568-569
    • /
    • 2006
  • The use of the nickel free, high nitrogen stainless steel powder and nitriding during sintering of iron based materials have been shown as an alternative way to the conventional PM stainless steels containing nickel. Nitrogen as an alloying element for iron improves in an effective way the properties of sintered alloyed steels. The powder metallurgy route is a suitable way to introduce nitrogen into these alloys and, in particular, to produce high nitrogen (close to the solubility limit) stainless steels. The paper presents and discusses the nitriding behavior of nickel-free stainless steels produced by powder metallurgy method. Alloyed melt was atomized by nitrogen and in this way nitrogen was introduced into the powder. Further nitriding occurred during sintering in a nitrogen atmosphere. For comparison, compacts having the same composition as an alloyed powder were produced from elemental powders mixture. Sintering-nitriding behaviour of investigated materials has been controlled by dilatometry, chemical and X-Ray phase analysis and metallography. Mechanical properties of sintered compacts were also measured.

  • PDF

기계적합금화법에 의해 제조된 ZSM-5촉매특성에 미치는 Cu의 영향 (Effect of Copper on the Properties of ZSM-5 Catalyst Fabricated by Mechanical Alloying Method)

  • 안인섭
    • 한국분말재료학회지
    • /
    • 제3권3호
    • /
    • pp.153-158
    • /
    • 1996
  • The exhaust gas from vehicle engines and industrial boilers contains considerable amount of harmful nitrogen monoxide(NO) which causes air pollusion and acid rain. To remove NO catalytic reduction processes using Cu ion exchanged ZSM-5 zeolite have been widely studied. In this study, an attempt was made to fabricate Cu/zeolite catalyst by using high energy ball mill. The catalytic performance of ball milled Cu/ZSM-5 zeolites is analyzed and optimum copper contents was determined. The processing variables were reaction temperature and copper contents. Complete removal of NO gas was obtained at the temperature of 553 K on 10wt.% CU/ZSM-5 mechanically alloyed composite powders. Mechanically alloyed CU/ZSM-5 catalyst showed homogeneous distribution of Cu in ZSM-5.

  • PDF

Ni-W 합금 촉매를 이용한 carbon nanotube 제조 및 특성 분석 (Synthesis and Characterization of Carbon Nanotube Using Ni-W alloyed Catalyst Substrate)

  • 정성회;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.328-331
    • /
    • 2000
  • Carbon nanotube(CNT) was successfully grown on Ni-W alloyed substrate by applying PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni-W alloyed substrate was prepared by mechanical alloying method. In order to find the optimum growth condition, initially two different types of gas mixtures such ac $C_2$H$_2$-H$_2$and $C_2$H$_2$-MH$_3$were systematically investigated by adjusting results on the mixing ratio in temperature range of 500 to 80$0^{\circ}C$. In this work, we will report the preliminary results on the CNT processed by PECVD, which were characterized by XRD, SEM and TEM. Finally we will evalute the effect on CNT growth by changing many processing parameters, such as typical gas, mixing ratio between 2 mixture, plasma power and etc.

  • PDF

CHARACTERISTICS OF DIE-ATTACH METHOD BY SINTER BONDING USING Ag-40Cu MECHANICALLY ALLOYED PARTICLES

  • WOO LIM CHOI;JONG-HYUN LEE
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.507-512
    • /
    • 2019
  • Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 ㎛ average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225℃ in air; the combination of high pressure and long bonding time at 225℃ enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225℃ and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250℃ was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225℃ during heating.

Fabrication of Aluminum Matrix Composite Reinforced with Al0.5CoCrCuFeNi High-Entropy Alloy Particles

  • Min Sang Kim;Han Sol Son;Gyeong Seok Joo;Young Do Kim;Hyun Joo Choi;Se Hoon Kim
    • Archives of Metallurgy and Materials
    • /
    • 제67권4호
    • /
    • pp.1543-1546
    • /
    • 2022
  • The aluminum composite with dispersed high entropy alloy were developed by stir casting involving the powder-in-tube method. First, Al0.5CoCrCuFeNi high entropy alloy (HEA) powder was made by mechanical alloying, and the powder was extruded in a tube-type aluminum container to form HEA precursor. The extruded HEA precursor was then dispersed in the aluminum matrix via stir casting. As a result, Fe-Cr-Ni based high-entropy phases was uniformly formed in the aluminum matrix, revealing ~158, 166, 235% enhancement of tensile strength by incorporating 1, 3, and 5 wt% HEA particles, respectively.

니켈 실리사이드 화합물의 소결특성 (Sintering Characteristics of Nickel Silicide Alloy)

  • 변창섭;이상호
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.

기계적 합금화한 Ni-W(WC)의 미세구조 및 특성 (Microstructure and Characteristics of Mechanically Alloyed Ni-W(WC))

  • 신수철;장건익
    • 한국재료학회지
    • /
    • 제8권12호
    • /
    • pp.1133-1137
    • /
    • 1998
  • MCFC(Molten Carbonate Fuel Cell) 작동온도인 $650^{\circ}C$에서 Ni 음극의 Creep 및 소결에 대한 저항성을 개선시키고자 Ni-W(WC) 복합재료를 기계적 합금법으로 제조하였다. 기계적 합금화한 분말의 XRD분석결과 밀링시간이 증가함에 따라 재료의 규칙적인 결정이 파괴되어 비정질화 되어가는 경향을 보였다. 소결은 $1280^{\circ}C$의 수소분위기에서 10시간 행하였다 소결된 시편의 dot-mapping 및 TEM 분석결과 Ni-W 계면에서의 2차상 관찰되지 않았으나 $0.1\mu\textrm{m}$ 이하의 W이 Ni 기지내에 미세하고 균일하게 분포되어 있는 것으로 나타났다. 이와같이 미세하고 균일하게 분포되어 있는 W은 고용강화 및 분산강화 효과를 통하여 Ni음극의 기계적 특성을 향상시킬 것으로 기대된다.

  • PDF

진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구 (Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer)

  • 조진현;진영민;안지훈;이기안
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

DV-Xα 분자 궤도법을 이용한 고강도 타이타늄 합금 설계 (A Study on the Design of High-Stength Titanium Alloys Using DV-Xα Molecular Orbital Method)

  • 백민숙;윤동주;원대희;김병일
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.739-745
    • /
    • 2011
  • Beta-type alloys are the most versatile class of titanium alloys. They offer the highest strength to weight ratios and very attractive combinations of strength, toughness, and fatigue resistance inlarge cross sections [1]. The present study was made to obtain useful information for the design of ${\beta}$-type titanium alloys with high-strength properties by using the $DV-X{\alpha}$ method. Employing two calculated parameters, the bond order (Bo) and the d-orbital energy level (Md) of alloying elements in ${\beta}$-type titanium alloy was introduced and used for prediction of mechanical properties. Thus, high-strength titanium alloys were designed by calculating the Md and Bo values of the previous and present titanium alloys.

전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구 (Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications)

  • 최수지;이현재;백수현;현승균;정현도;문병문
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.